Skip to main content
Log in

Effect of phosphorus on the formation of retained austenite and mechanical properties in Si-containing low-carbon steel sheet

  • Mechanical Behavior
  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The effect of phosphorus and silicon on the formation of retained austenite has been investigated in a low-carbon steel cold rolled, intercritically annealed, and isothermally held in a temperature range of bainitic transformation followed by air cooling. The steel sheet containing phosphorus after final heat-treatment consisted of ferrite, retained austenite, and bainite or martensite. Phosphorus, especially in the presence of silicon, in steel was useful to assist the formation of retained austenite. Mechanical properties, such as tensile strength, uniform elongation, and the combination of tensile strength/ductility, were improved when phosphorus was increased up to 0.07 pct in 0.5 pct Si steel. This could be attributed to the strain-induced transformation of retained austenite during tensile deformation. Furthermore, two types of retained austenite were observed in P-containing steel. One is larger than about 1 μm in size and usually exists adjacent to bainite; the other one is of submicron size and usually exists in a ferrite matrix. High phosphorus content promotes the formation of stable (small size) austenites which are considered to be stabilized mainly by their small size effect and have a different formation mechanism from the coarser retained austenite in the lower P steels. The retained austenites of submicron size showed mechanical stability even after 10 pct deformation, suggesting that these small austenites have little effect on ductility. The 0.07 pct P-0.5 pct Si-1.5 pct Mn-0.12 pct C steel showed a high strength of 730 MPa and a total elongation of 36 pct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Matumura, Y. Sakuma, and H. Takechi:Tetsu-to-Hagané, 1986, vol. 72, p. S635.

    Google Scholar 

  2. O. Matsumura, Y. Sakuma, and H. Takechi:Trans. Iron Steel Inst. Jpn., 1987, vol. 27, pp. 570–79.

    CAS  Google Scholar 

  3. V. F. Zackay, E. R. Parker, D. Fahr, and R. Bush:Trans. ASM, 1967, vol. 60, pp. 252–59.

    CAS  Google Scholar 

  4. I. Tamura:Tetsu-to-Hagané, 1970, vol. 56, pp. 429–45.

    CAS  Google Scholar 

  5. I. Sawai, S. Uchida, and E. Kamisaka,Tetsu-to-Hagané, 1985, vol. 71, p. S1292.

    Google Scholar 

  6. R. Le Houillier, G. Begin, and A. Dubé:Metall. Trans., 1971, vol. 2, pp. 2645–53.

    Article  Google Scholar 

  7. H. K. D. H. Bhadeshi and D. V. Edmonds:Metall. Trans. A, 1979, vol. 10A, pp. 895–907.

    Google Scholar 

  8. H. K. D. H. Bhadeshia and D. V. Edmonds:Metal Science, 1983, vol. 17, pp. 411–25.

    Article  CAS  Google Scholar 

  9. W. S. Owen:Trans. ASM, 1954, vol. 46, pp. 812–29.

    Google Scholar 

  10. W. C. Leslie and G. C. Rauch:Metall. Trans. A, 1978, vol. 9A, pp. 343–49.

    CAS  Google Scholar 

  11. Shantanu K. Ray, Sanak Mishra, and O. N. Mohanty:Scripta Metall., 1981, vol. 15, pp. 971–73.

    Article  CAS  Google Scholar 

  12. Shantanu K. Ray, Sanak Mishra, and O. N. Mohanty:Scripta Metall., 1982, vol. 16, pp. 43–47.

    Article  CAS  Google Scholar 

  13. K. W. Andrews:J. Iron Steel Inst., 1965, vol. 203, pp. 721–27.

    CAS  Google Scholar 

  14. R. L. Miller:Trans. ASM, 1964, vol. 57, pp. 892–99.

    CAS  Google Scholar 

  15. F. B. Pickering:Physical Metallurgy and the Design of Steels, Applied Science Publishers, Ltd., London, 1978, pp. 69–72.

    Google Scholar 

  16. F. B. Pickering:Physical Metallurgy and the Design of Steels, Applied Science Publishers, Ltd. London, 1978, pp. 62–63.

    Google Scholar 

  17. J. M. Rigsbee and P. J. Vander Arend:Formable HSLA and Dual-Phase Steels, A. T. Davenport, ed., TMS-AIME, Warrendale, PA, 1979, pp. 56–86.

    Google Scholar 

  18. Narasimha-Rao V. Bangaru and Anil K. Sachdev:Metall. Trans. A, 1982, vol. 13A, pp. 1899–1906.

    Google Scholar 

  19. M. F. Ashby:Strengthening Methods in Crystals, John Wiley and Sons, New York, NY, 1971, pp. 137–92.

    Google Scholar 

  20. G. E. Dieter:Mechanical Metallurgy, 2nd ed., McGraw-Hill Book Co., New York, NY, 1976 pp. 342–44.

    Google Scholar 

  21. E. C. Bain and H. W. Paxton:Alloying Elements in Steel, ASM, Metals Park, OH, 1966, pp. 124–25.

    Google Scholar 

  22. R. F. Hehemann:Phase Transformation, ASM, Metals Park, OH, 1970, pp. 409–12.

    Google Scholar 

  23. N. C. Goel, J. P. Chakravarty, and K. Tangri:Metall. Trans. A, 1987, vol. 18A, pp. 5–9.

    CAS  Google Scholar 

  24. J. Chung, H. Era, and M. Shimizu:Metall. Trans. A, 1987, vol. 18A, pp. 957–68.

    CAS  Google Scholar 

  25. H. Era, M. Shimizu, and J. Chung:Tetsu-to-Hagané, 1985, vol. 71, p. S646.

    Google Scholar 

  26. G. R. Speich, V. A. Demarest, and R. L. Miller:Metall. Trans. A, 1981, vol. 12A, pp. 1419–28.

    Google Scholar 

  27. P. Ostron, B. Lonnberg, and I. Lindgren:Metals Technology, 1981, pp. 81–93.

  28. B. V. N. Rao and M. S. Rashid:Metallography, 1983, vol. 13, pp. 19–37.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, H.C., Era, H. & Shimizu, M. Effect of phosphorus on the formation of retained austenite and mechanical properties in Si-containing low-carbon steel sheet. Metall Trans A 20, 437–445 (1989). https://doi.org/10.1007/BF02653923

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02653923

Keywords

Navigation