Skip to main content
Log in

Numerical simulation of a solidifying Pb-Sn alloy: The effects of cooling rate on thermosolutal convection and macrosegregation

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

Numerical simulations of a binary metal alloy (Pb-Sn) undergoing solidification phase change are performed using a continuum model for conservation of total mass, momentum, energy, and species. The system is contained in an axisymmetric, annular mold which is cooled along its outer vertical wall. Results show that thermosolutal convection in the melt and mushy zones is strongly coupled and that macrosegregation is reduced with increased cooling rate. For low cooling rates, solutally induced convection in the mushy zone favors the development of channels, which subsequently spawn macrosegregation in the form of A-segregates. With increasing solidification rate, however, thermosolutal interactions in the melt contribute to reducing the formation of channels and A-segregates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.C. Flemings:Scand. J. Metall., 1976, vol. 5, pp. 1–15.

    CAS  Google Scholar 

  2. K.M. Fisher:Phys. Chem. Hydrodyn., 1981, vol. 2, pp. 311–26.

    CAS  Google Scholar 

  3. F. Wolff, C. Beckermann, and R. Viskanta:Exp. Thermal Fluid Sci., 1988, vol. 1, pp. 83–91.

    Article  CAS  Google Scholar 

  4. S.M. Copley, A.F. Giamei, S.M. Johnson, and M.F. Hornbecker:Metall. Trans., 1970, vol. 1, pp. 2193–2204.

    Article  CAS  Google Scholar 

  5. J. Szekely and A.S. Jassal:Metall. Trans. B, 1978, vol. 9B, pp. 389–98.

    Article  ADS  CAS  Google Scholar 

  6. A.K. Sample and A. Hellawell:Metall. Trans. A, 1984, vol. 15A, pp. 2163–73.

    ADS  CAS  Google Scholar 

  7. C. Beckermann and R. Viskanta:Phys. Chem. Hydrodyn., 1988, vol. 10, pp. 195–213.

    CAS  Google Scholar 

  8. M.S. Christenson and F.P. Incropera:Int. J. Heat Mass Transfer, 1989, vol. 32, pp. 47–68.

    Article  CAS  Google Scholar 

  9. J.R. Sarazin and A. Hellawell:Metall. Trans. A, 1988, vol. 19A, pp. 1861–71.

    ADS  CAS  Google Scholar 

  10. S.D. Ridder, S. Kou, and R. Mehrabian:Metall. Trans. B, 1981, vol. 12B, pp. 435–47.

    Article  ADS  CAS  Google Scholar 

  11. D.N. Petrakis, M.C. Flemings, and D.R. Poirier: inModeling of Casting and Welding Processes, TMS-AIME, Warrendale, PA, 1981.

    Google Scholar 

  12. R. Mehrabian, M. Keane, and M.C. Flemings:Metall. Trans., 1970, vol. 1,pp. 1209–20.

    CAS  Google Scholar 

  13. R. Mehrabian, M. Keane, and M.C. Flemings:Metall. Trans., 1970, vol. 1, pp. 3238–41.

    CAS  Google Scholar 

  14. Sindo Kou, David R. Poirier, and M.C. Flemings:Metall. Trans. B, 1978, vol. 9B, pp. 711–19.

    CAS  Google Scholar 

  15. M.J. Stewart and F. Weinberg:Trans. Metall. Soc. AIME, 1969, vol. 245, pp. 2108–10.

    CAS  Google Scholar 

  16. M.J. Stewart and F. Weinberg:Metall. Trans., 1972, vol. 3, pp. 333–37.

    Article  CAS  Google Scholar 

  17. R. Ricou and C. Vives:Int. J. Heat Mass Transfer, 1982, vol. 25, pp. 1579–88.

    Article  CAS  Google Scholar 

  18. M.C. Flemings and G.E. Nereo:Trans. Metall. Soc. AIME, 1967, vol. 239, pp. 1449–61.

    CAS  Google Scholar 

  19. M.C. Flemings, R. Mehrabian, and G.E. Nereo:Trans. Metall. Soc. AIME, 1968, vol. 242, pp. 41–49.

    CAS  Google Scholar 

  20. M.C. Flemings and G.E. Nereo:Trans. Metall. Soc. AIME, 1968, vol. 242, pp. 50–55.

    CAS  Google Scholar 

  21. T. Fujii, D.R. Poirier, and M.C. Flemings:Metall. Trans. B, 1979, vol. 10B, pp. 331–39.

    Article  ADS  CAS  Google Scholar 

  22. S. Asai and I. Muchi:Trans. Iron Steel Inst. Jpn., 1978, vol. 18, pp. 90–98.

    CAS  Google Scholar 

  23. W.D. Bennon and F.P. Incropera:Int. J. Heat Mass Transfer, 1987, vol. 30, pp. 2161–70.

    Article  MATH  CAS  Google Scholar 

  24. W.D. Bennon and F.P. Incropera:Int. J. Heat Mass Transfer, 1987, vol. 30, pp. 2171–87.

    Article  CAS  Google Scholar 

  25. W.D. Bennon and F.P. Incropera:Metall. Trans. B, 1987, vol. 18B, pp. 611–16.

    Article  ADS  CAS  Google Scholar 

  26. M.S. Christenson and F.P. Incropera:Int. J. Heat Mass Transfer, 1989, vol. 32, pp. 69–79.

    Article  CAS  Google Scholar 

  27. D.G. Neilson, F.P. Incropera, and W.D. Bennon:Int. J. Heat Mass Transfer, 1990, vol. 33, pp. 367–80.

    Article  ADS  CAS  Google Scholar 

  28. V.R. Voller and C. Prakash:Int. J. Heat Mass Transfer, 1987, vol. 30, pp. 1709–19.

    Article  CAS  Google Scholar 

  29. V.R. Voller, A.D. Brent, and C. Prakash:Int. J. Heat Mass Transfer, 1989, vol. 32, pp. 1718–31.

    Article  ADS  Google Scholar 

  30. W.D. Bennon and F.P. Incropera:Numerical Heat Transfer, 1988, vol. 13, pp. 277–96.

    Article  Google Scholar 

  31. S.V. Patankar:Numerical Heat Transfer and Fluid Flow, McGraw- Hill, New York, 1980.

    MATH  Google Scholar 

  32. Smithells Metals Reference Book, 6th ed., E. Brandes, ed., Butterworth’s, London, 1983.

    Google Scholar 

  33. CRC Handbook of Chemistry and Physics, 56th ed., R.C. Weast, ed., CRC Press, Cleveland, 1975.

    Google Scholar 

  34. F.P. Incropera and D.P. DeWitt:Fundamentals of Heat Transfer, John Wiley & Sons, New York, NY, 1981.

    Google Scholar 

  35. C. Vives and C. Perry:Int. J. Heat Mass Transfer, 1986, vol. 29, pp. 21–33.

    Article  CAS  Google Scholar 

  36. Diffusion Data, Diffusion Information Center, Cleveland, OH, 1967, vol. 1.

  37. R. Nasser-Rafi, R. Deshmukh, and D.R. Poirier:Metall. Trans. A, 1985, vol. 16A, pp. 2263–71.

    ADS  CAS  Google Scholar 

  38. D.G. Neilson and F.P. Incropera:Int. J. Heat Mass Transfer, 1991, in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prescott, P.J., Incropera, F.P. Numerical simulation of a solidifying Pb-Sn alloy: The effects of cooling rate on thermosolutal convection and macrosegregation. Metall Trans B 22, 529–540 (1991). https://doi.org/10.1007/BF02654292

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02654292

Keywords

Navigation