Skip to main content
Log in

Acid dissolution of willemite (Zn, Mn)2 SiO4) and hemimorphite (Zn4Si2O7(OH)2 H2O)

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

The influence of temperature, pH, acid type, and surface area on the kinetics of the acid dissolution of natural and synthetic willemites and natural hemimorphites has been investigated. Specific rate constants, based upon areas determined by krypton adsorption measurements, were estimated from the experimental data obtained. For both willemite and hemimorphite, the rates of dissolution in different acids are shown to be related to the relative strengths of zinc-acid anion complexes. The reactivity of willemite toward acids increases with increasing replacement of zinc by manganese. Mixed chemical/diffusion control is responsible for the observed rates of willemite dissolution under the conditions studied (HNO3, HCl, HClO4, H3PO4, H2SO4, pH 0.31 to 3.00,T 21 to 94 °C). Estimates of the relative contributions of chemical and diffusional resistances to the overall rate have been made for the dissolution of manganese-free willemite in sulfuric acid solutions. The experimentally measured rates have been demonstrated to be in reasonable agreement with predicted overall dissolution rates. Proposals are made regarding the nature of the diffusion and chemical steps involved in the dissolution process. Hemimorphite was found to be considerably more reactive than willemite and its dissolution is primarily diffusion controlled under the conditions studied (T 20 to 76 °C, pH 2 to 3.5).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Terry:Hydrometallurgy, 1983, vol. 10, no. 2, pp. 151–71.

    Article  CAS  Google Scholar 

  2. I. G. Matthew and D. Elsner:Metall. Trans. B, 1977, vol. 8B, pp. 73–83.

    Google Scholar 

  3. J. P. Wood, P. L. Kern, and N. C. Ashdown:J. Met., 1977, vol. 29,no. 11, pp. 7–12.

    CAS  Google Scholar 

  4. F. A. Kroger:Physica, 1939, vol. 6, pp. 764–78.

    Article  CAS  Google Scholar 

  5. C. Frondel and J. L. Baum:Econ. Geol., 1974, vol. 69, pp. 157–79.

    Article  CAS  Google Scholar 

  6. A.I. Vogel:A textbook of quantitative inorganic analysis, 3rd ed., Longmans, London, 1961, pp. 579–82.

    Google Scholar 

  7. M. E. Wadsworth: inRate processes of extractive metallurgy, H. Y. Sohn and M.E. Wadsworth, eds., Plenum Press, New York, NY, 1976, pp. 141–58.

    Google Scholar 

  8. W.L. Marshall and E.V. Jones:J. Phys. Chem., 1966, vol. 70, pp. 4028–40.

    Article  CAS  Google Scholar 

  9. L. G. Sillen and A. Martell:Stability constants of metal ion complexes, Chemical Society, London, Special Publication no. 17, 1964, pp. 318, 362.

    Google Scholar 

  10. R. M. Smith and A. E. Martell:Critical stability constants, Vol. 4,Inorganic Complexes, Plenum Press, New York, NY, 1976, pp. 51, 57, 84, 108.

    Google Scholar 

  11. A. P. Prosser: inMineral Processing and Extractive Metallurgy, Proc. 9th Commonwealth Min. Metall. Congress, 1969, Inst. Min. Metall., London, 1970, pp. 59–79.

    Google Scholar 

  12. P. Lussiez, K. Osseo-Asare, and G. Simokovich:Metall. Trans. B, 1981, vol. 12B, pp. 651–57.

    CAS  Google Scholar 

  13. H.K. Perkins and M.J. Sienko:J. Chem. Phys., 1967, vol. 46, pp. 2398–2401.

    Article  CAS  Google Scholar 

  14. R.J.R.S.B. Bhalla and E.W. White:J. Electrochem. Soc., 1972, vol. 119, pp. 740–43.

    Article  CAS  Google Scholar 

  15. A. Seidell:Solubilities of inorganic and metal organic compounds, Van Nostrand, New York, NY, 1940, p. 1581.

    Google Scholar 

  16. H.F.W. Taylor:Am. Mineral, 1962, vol. 47, pp. 932–44.

    CAS  Google Scholar 

  17. J. Gotz and C.R. Masson:J. Chem. Soc. A, Part III, 1970, pp. 2683–86.

  18. I. Sanemasa, M. Yoshida, and T. Ozawa:Bull. Chem. Soc. Jpn., 1972, vol. 45, pp. 1741–46.

    Article  CAS  Google Scholar 

  19. I. Sanemasa and T. Katswa:Bull. Chem. Soc. Jpn., 1973, vol. 46, pp. 3416–22.

    Article  CAS  Google Scholar 

  20. V. Escobar: Imperial College, London, U. K., unpublished research, 1980.

  21. B. Terry: Ph.D. Thesis, University of London, 1981.

  22. B. Terry:Hydrometallurgy, 1983, vol. 10, no. 2, pp. 135–50.

    Article  CAS  Google Scholar 

  23. I.H. Warren and E. A. Devuyst: inInternational Symposium on Hydrometallurgy, D.J. Evans and R.S. Shoemaker, eds., TMS-AIME, New York, NY, 1973, pp. 229–64.

    Google Scholar 

  24. I. H. Warren and E. A. Devuyst: inHydrometallurgy, I. Chem. E. Symposium, G.A. Davies and J.B. Scuffham, eds., Series no. 42, 1975, 7.1–7.11., I. Chem. E. Services, London, 1975.

  25. D.A. Vermilyea:J. Electrochem. Soc., 1966, vol. 113, pp. 1067–70.

    CAS  Google Scholar 

  26. J. Diggle:Oxides and oxide films, Marcel Dekker, New York, NY, 1973, pp. 281–389.

    Google Scholar 

  27. R.L. Segall, R.C. Smart, and P.S. Turner:Chem. Aust., 1982, vol. 49, pp. 241–48.

    CAS  Google Scholar 

  28. B. Terry:Hydrometallurgy, in press.

  29. A.C. Riddiford:Adv. Electrochem. Electrochem. Eng., 1964, vol. 4, pp. 47–116.

    Google Scholar 

  30. S. L. Pohlman and F. A. Olson: inSolution Mining Symposium, F. F. Alpan et al., eds., AIME, New York, NY, 1974, pp. 446–60.

    Google Scholar 

  31. R. W. Luce, R. W. Bartlett, and G. A. Parks:Geochim. Cosmochim. Acta, 1972, vol. 36, pp. 35–50.

    Article  CAS  Google Scholar 

  32. G. Simokovich and J.B. Wagner:J. Electrochem. Soc., 1963, vol. 110, pp. 513–16.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly a Postgraduate Research Student, Department of Metallurgy and Materials Science, Royal School of Mines, Imperial College, London

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terry, B., Monhemius, A.J. Acid dissolution of willemite (Zn, Mn)2 SiO4) and hemimorphite (Zn4Si2O7(OH)2 H2O). Metall Trans B 14, 335–346 (1983). https://doi.org/10.1007/BF02654351

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02654351

Keywords

Navigation