Skip to main content
Log in

The Effect of Grain Size on Fatigue Growth of Short Cracks

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The influence of alloy grain size on growth rates of surface cracks 20 to 500 μm in length was studied in Al 7075-T6 specimens prepared in 12 and 130 μn grain sizes. Grain boundaries temporarily interrupt the propagation of cracks shorter than several grain diameters in length. Linear elastic fracture mechanics is inadequate to describe resulting average growth rates which must instead be characterized as a function of cyclic stress amplitude, σa, and alloy grain size as well as stress intensity range, σK. These observations are rationalized using two models, one that relates crack closure stress to alloy grain size, and a second that relates the development of microplasticity in a new grain in the crack path to grain size. In addition, growth rates were found to be faster in fully reversed loading than in tension-tension loading, especially in the large grained material. Evidence is presented to demonstrate that this is a consequence of the fatigue induced development of a compressive residual surface stress during tension-tension loading. These complex effects, and the role of grain size in determining short crack growth, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Smith:Int. J. Fracture, 1977, vol. 13, pp. 717–20.

    Article  Google Scholar 

  2. M. H. El Haddad, K. N. Smith, and T. H. Topper:Trans. ASME-J. Eng. Materials and Technology, 1979, vol. 101, pp. 42–46.

    Google Scholar 

  3. S. Taira, K. Tanaka, and M. Hoshina: inFatigue Mechanisms, ASTM STP675,J.T. Fong,ed.,ASTM,Philadelphia,PA, 1979, pp. 135–73.

    Google Scholar 

  4. W.L. Morris:Metall. Trans. A, 1980, vol. 11A, pp. 1117–23.

    CAS  Google Scholar 

  5. C. Y. Yang and H. W. Liu:Scripta Met., 1980, vol. 14, pp. 785–90.

    Article  CAS  Google Scholar 

  6. W.L. Morris, M.R. James, and O. Buck:Metall. Trans. A, 1981, vol. 12A, pp. 57–64.

    Google Scholar 

  7. G. P. Sheldon, T. S. Cook, J.W. Jones, and J. Lankford:Fat. Eng. Materials and Structures, 1981, vol. 3, pp. 219–28.

    Article  Google Scholar 

  8. K. Tanaka, Y. Nakai, and M. Yamashita:Int. J. Fracture, 1981, vol. 17, pp. 519–33.

    CAS  Google Scholar 

  9. J. Lankford, T. S. Cook, and G. P. Sheldon:Int. J. Fract., 1981, vol. 17, pp. 143–55.

    Article  CAS  Google Scholar 

  10. M. R. James and W. L. Morris:Metall. Trans. A, 1983, vol. 14A, pp. 153–55.

    Google Scholar 

  11. W.L. Morris, M. R. James, and O. Buck:Eng. Fract. Mech., 1983, vol. 18, no. 4, pp. 871–77.

    Article  Google Scholar 

  12. W.L. Morris and M.R. James:Fatigue Mechanisms: Advances in Quantitative Measurement of Fatigue Damage, ASTM STP 811, J. Lankford, ed., ASTM, Philadelphia, PA, pp. 179–206, 1983.

    Google Scholar 

  13. J.A. Wert, N.E. Paton, C.H. Hamilton, and M.W. Mahoney:Metall. Trans. A, 1981, vol. 12A, pp. 1267–76.

    Google Scholar 

  14. J.A. Wert:Strength of Metals and Alloys, R.G. Gifkins, ed., Pergamon Press, Oxford, 1982, vol. 1, pp. 339–44.

    Google Scholar 

  15. M.R. James and J.B. Cohen:Treatise on Materials Science and Technology, H. Herman, ed., Academic Press, New York, NY, vol. 19A, pp. 1–62.

  16. W. L. Morris, M. R. James, and O. Buck:Nondestructive Evaluation: Microstructural Characterization and Reliability Strategies, O. Buck and S.M. Wolf, eds., TMS-AIME, Warrendale, PA, 1980, pp. 387–99.

    Google Scholar 

  17. W. L. Morris, M. R. James, and O. Buck:Eng. Fract. Mech., 1980, vol. 13, pp. 213–21.

    Article  Google Scholar 

  18. P. E. Bretz, A. K. Vasudevan, R. J. Bucci, and R. C. Malcolm: Final Report, N00019-79-C-0258, Alcoa Labs, Alcoa Center, PA, 1981.

  19. J. Lankford:Fatigue of Engineering Materials and Structures, 1982, vol. 5, pp. 233–48.

    Article  Google Scholar 

  20. R. Chang, W.L. Morris, and O. Buck:Scripta Metall., 1979,vol. 13, pp. 191–94.

    Article  Google Scholar 

  21. W. L. Morris, R. V. Inman, and M. R. James:J. Materials Science, 1982, vol. 17, pp. 1413–19.

    Article  CAS  Google Scholar 

  22. S. Pearson:Eng. Fract. Mech., 1975, vol. 7, pp. 235–47.

    Article  CAS  Google Scholar 

  23. D. Taylor and J.F. Knott:Fat. of Eng. Materials and Structures, 1981, vol. 4, pp. 147–55.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zurek, A.K., James, M.R. & Morris, W.L. The Effect of Grain Size on Fatigue Growth of Short Cracks. Metall Trans A 14, 1697–1705 (1983). https://doi.org/10.1007/BF02654397

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02654397

Keywords

Navigation