Skip to main content
Log in

Mechanism of hot-shortness in leaded and tellurized free-machining steels

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

This investigation was aimed at understanding the mechanism of hot-shortness in AISI 12L14 + Te steels, which might lead to a hot-rolling practice to minimize the high yield losses in this grade. High temperature tensile tests showed a pronounced loss in ductility between 810 and 1150 °C, the embrittlement being most severe at about 980 °C. Electron microprobe studies confirmed thermodynamic stability data which indicated that tellurium occurs primarily as PbTe in this steel composition. SEM fractography revealed increasingly brittle, partially intergranular tensile fracture with a loss of ductility. Auger Electron Spectroscopy of samples quenched from the embrittlement temperature range indicated the formation of a thin film of PbTe on the grain boundary surfaces. All these results are consistent with a mechanism of liquid metal embrittlement by PbTe which has a melting point of 923 °C. Some theoretical considerations of this mechanism are discussed. The characteristic return to ductility above the embrittlement range suggests that rolling at temperatures above 1150 °C might minimize the hot-shortness problem. Results of limited hot-rolling experiments to study the incidence of surface cracking as a function of temperature support the above suggestion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. T. Brown: Report No. 787, GKN Group Technological Centre, Wolverhampton, U.K., September, 1965.

  2. G. T. Brown: Report No. 911, GKN Group Technological Centre, Wolverhampton, U.K., June, 1967.

  3. G. Odin, R. Leveque, M. Aucey, and P. A. Portevin:Rev. Met., 1968, vol. 65, p. 363.

    CAS  Google Scholar 

  4. M. Hugo, J. Bellot, J. Frey, and M. Gantois:Rev. Met., 1971, vol. 68, p. 397.

    CAS  Google Scholar 

  5. W. E. Heitmann and M. G. Wright: U.S. Patent No. 3,382,700, May 4, 1968.

  6. N. P. Seah:Surface Science, 1975, vol. 53, p. 168.

    Article  CAS  Google Scholar 

  7. M. Hansen:Constitution of Binary Alloys, McGraw Hill Book Company, 1958.

  8. R. P. Elliott:Constitution of Binary Alloys, First Supplement, McGraw Hill Book Company, 1965.

  9. R. Hultgren, R. L. Orr, P. D. Anderson, and K. K. Kelley:Selected Values of Thermodynamic Properties of Metals and Alloys, University of California, 1971.

  10. G. M. Lukashenko, R. I. Polotskaya, N. Abrikosov:Khim. Suyaz Poluprov., Polumetallakh, 1972, p. 333.

  11. K. B. Sadykov and S. A. Semenkovich:Izv. Akad. Nauk SSR, Fiz Tekhn. Khim i Geol Nauk, 1966, vol. 2, p. 16.

    Google Scholar 

  12. A. W. Douglas, W. E. Heitmann, and E. S. Madrzyk:Trace Additives: Bismuth, Selenium, and Tellurium in Iron and Steel, ASM Symposium, 1970, p. 143.

  13. G. Hallerman, Unpublished Research, Inland Steel Company, 1969.

  14. W. J. M. Salter and F. B. Pickering:J. Iron Steel Inst., 1967, vol. 205, p. 973.

    CAS  Google Scholar 

  15. T. B. Smith and D. B. Clayton:Nature, 1963, vol. 198, April 27, p. 380.

    Article  CAS  Google Scholar 

  16. A. N. Krestovnikov and N. N. Glagoleva:Akad. Nauk SSSR, 1965, vol. 162, p. 94.

    Google Scholar 

  17. S. Mostovoy and N. N. Breyer:Trans. ASM, 1968, vol. 61, p. 219.

    CAS  Google Scholar 

  18. N. N. Breyer and K. L.Johnson:J. of Testing and Evaluation, 1974, vol. 2, no. 6, p. 471.

  19. J. C. Lynn, W. R. Warke, and P. Gordon:Mater. Sci. Eng., 1975, vol. 18, p. 51.

    Article  CAS  Google Scholar 

  20. W. R. Warke and N. N. Breyer:The Effect of Lead on Micro-Crack Initiation and Propagation in Alloy Steels, Tech. Report No. 10752, U.S. Army Tank Command, 1969.

  21. D. C. Huffaker: Inland Report No. 274.2.2,Hot Tensile Properties of Various Carbon and Free-Machining Steels, December 29, 1971.

  22. C. J. McMahon:Temper Embrittlement in Steel, ASTM STP, 1968, vol. 407, p. 127.

    Google Scholar 

  23. H. L. Marcus and P. W. Palmberg:Trans. TMS-AIME, 1969, vol. 245, p. 1664.

    CAS  Google Scholar 

  24. A. Joshi and D. F. Stein:Corrosion-NACE, 1972, vol. 28, p. 321.

    CAS  Google Scholar 

  25. R. D. Zipp, W. R. Warke, and N. N. Breyer:ElectronMicro-fractography, ASTM STP 453, 1968, p. 111.

  26. L. E. Davis, N. C. MacDonald, P. W. Palmberg, G.E. Riach, R. E. Weber:Handbook of Auger Electron Spectroscopy, Second Edition, Physical Electronics Industries, Inc., Eden Prairie, MN, 1976.

    Google Scholar 

  27. A. R. C. Westwood, C. M. Preece, and M. H. Kamdar:Trans. ASM, 1967, vol. 60, p. 723.

    CAS  Google Scholar 

  28. A. A. Kelly, W. R. Tyson, and A. H. Cottrell:Phil. Mag., 1967, vol. 15, p. 567.

    CAS  Google Scholar 

  29. P. Gordon:Met. Trans. A, 1978, vol. 9A, p. 267.

    Article  CAS  Google Scholar 

  30. M. Guttman:Met. Trans. A, 1977, vol. 8A, p. 1383.

    Article  Google Scholar 

  31. N. A. Gjostein:Diffusion, ASM, Metals Park, Ohio, 1973.

    Google Scholar 

  32. C. S. Kennedy, Unpublished Results, Inland Steel Company, East Chicago, IN, 1969.

    Google Scholar 

  33. O. I. Tananaeva, R. A. Sapozhnikov, and A. V. Novoselova:Izv. Akad. Nauk. SSSR, Neorg. Mater., 1969, vol. 5, p. 737.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly with the Inland Steel Research Laboratories.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhattacharya, D., Quinto, D.T. Mechanism of hot-shortness in leaded and tellurized free-machining steels. Metall Trans A 11, 919–934 (1980). https://doi.org/10.1007/BF02654705

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02654705

Keywords

Navigation