Skip to main content
Log in

Effect of oscillation-mark formation on the surface quality of continuously cast steel slabs

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

An Erratum to this article was published on 01 December 1985

Abstract

In a study of early solidification during the continuous casting of steel slabs, the effect of the formation of oscillation marks on the surface quality of the slabs has been examined by metallographic in-vestigation of slab samples and by performing a set of mathematical analyses. Positive segregation of solute elements, especially phosphorus and manganese, has been observed at the bottom of the oscillation marks and has been classified into two categories. One type is observed at the end of the overflow region on subsurface hooks which originate from partial solidification of the meniscus. A heat-flow model which takes into account the shape of the oscillation marks has revealed that this type of positive segregation is caused by local delay of solidification at the bottom of the oscillation marks. The other type of positive segregation has been found in a layer on the bottom of the oscillation marks without subsurface hooks. This form of segregation cannot be explained by the heat-flow model, but is likely due to a penetration mechanism in which the negative pressure in the flux channel generated during the upward motion of the mold draws out interdendritic liquid from the semi-solidified shell. Transverse cracks are found along the bottom of oscillation marks. The surface of the transverse cracks exhibits an interdendritic appearance in the vicinity of the slab surface, which implies that the cracks are initiated as hot tears in the mold region. A heat-flow analysis predicts that deep oscillation marks cause nonuniformity of the shell in the mold, which also was observed in the metallographic in-vestigation. According to the heat-flow analysis, not only the depth but also the pitch of the oscillation marks affects the shell profile. Therefore increasing the frequency of mold oscillation effectively reduces transverse cracks, by decreasing both the depth and the pitch of oscillation marks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Kitamura, T. Soejima, S. Koyama, Y. Matsuda, J. Abu, Y. Nimiya, and Y. Yao:Tetsu-to-Hagané, 1981, vol. 67, no. 8, pp. 1229–35.

    CAS  Google Scholar 

  2. T. Ueda, H. Hirahara, A. Kuwabara, T. Watanabe, and K. Matsui:Tetsu-to-Hagané, 1981, vol. 67, no. 8, pp. 1236–40.

    Google Scholar 

  3. Y. Takemura, S. Mizoguchi, O. Tsubakihara, T. Kuwabara, and M. Saito:Nippon Steel Tech. Report, 1983, no. 21, pp. 189–201.

  4. E. Takeuchi and J. K. Brimacombe:Metall. Trans. B, 1984, vol. 15B, pp. 493–509.

    Article  CAS  Google Scholar 

  5. S. Tanaka, H. Misumi, S. Mizoguchi, and H. Horiguchi:Tetsu-to- Hagané, 1981, vol. 67, p. S172.

    Google Scholar 

  6. T. Mukai, N. Ogibayashi, R. Tsujino, T. Naito, H. Suzuki, Y. Abe, and S. Nagata:Tetsu-to-Hagané, 1982, vol. 68, pp. A161–64.

    Google Scholar 

  7. M. Hashio, M. Kawasaki, T. Watanabe, Y. Ohtani, and J. Murayama:Tetsu-to-Hagané, 1980, vol. 66, p. S757.

    Google Scholar 

  8. H. Suzuki, S. Nishimura, J. Imamura, and Y. Nakamura:Tetsu-to- Hagané, 1981, vol. 67, no. 8, pp. 1180–89.

    CAS  Google Scholar 

  9. Y. Iida, K. Moriwaki, N. Ueda, and Y. Habu:Tetsu-to-Hagané, 1973, vol. 59, p. S89.

    Google Scholar 

  10. Y, Miyashita, M. Suzuki, K. Taguchi, S. Uchida, H. Sato, and M. Yamamura:Nippon Kokan Tech. Report, 1982, no. 36, pp. 1–10.

  11. J. Fukumi, Y. Miyawaki, M. Hanmyo, M. Ishikawa, and Y. Ishida:Tetsu-to-Hagané, 1982, vol. 68, p. S985.

    Google Scholar 

  12. T. Sugitani: in preprint of CONCAST Slab Seminar, 1973, Zurich.

  13. S. Tanaka, H. Misumi, H. Kibe, T. Ohta, and S. Mizoguchi:Tetsu-to-Hagané, 1981, vol. 67, p, S852.

    Google Scholar 

  14. H. Takeuchi, S. Matsumura, and Y. Ikehara:Tetsu-to-Hagané, 1983, vol. 69, no. 16, pp. 1995–2001.

    CAS  Google Scholar 

  15. H. Takeuchi, S. Matsumura, T. Yanai, and Y. Ikehara:Tetsu-to- Hagané, 1984, vol. 70, no. 7, pp. 687–93.

    CAS  Google Scholar 

  16. I. Taguchi, H. Hamada, and M. Kama:Autumn Symposium of Japan Institute of Metals, 1981, p. 89.

  17. H. Takeuchi, S. Matsumura, Y. Ikehara, T. Komano, and T. Yanai:Tetsu-to-Hagané, 1983, vol. 69, no. 1, pp. 73–79.

    CAS  Google Scholar 

  18. J. K. Brimacombe, F. Weinberg, and E. B. Hawbolt:Metall. Trans. B, 1979, vol. 10B, pp. 279–92.

    Article  CAS  Google Scholar 

  19. I. Saucedo, J. Beech, and G. J. Davis:Proc. 6th Intl. Vacuum Metal- lurgy Conference. San Diego, CA, 1979, pp. 885–904.

  20. S.N. Singh and K. E. Blazek:J. Metals, 1974, vol. 26, pp. 17–27.

    Google Scholar 

  21. W. A. Fischer and H. Frye:Arch. Eisenhüttenw., 1970, vol. 41, p. 293.

    CAS  Google Scholar 

  22. H. Nakato and I. Muchi:Tetsu-to-Hagané, 1980, vol. 66, pp. 33–42.

    CAS  Google Scholar 

  23. I.V. Samarasekera and J. K. Brimacombe:Can. Met. Quart., 1979, vol. 18, pp. 251–66.

    CAS  Google Scholar 

  24. B. Carnahan, H.A. Luther, and J.O. Wilkes:Applied Numerical Method, Wiley, New York, NY, 1969, pp. 432–33.

    Google Scholar 

  25. T. Sakuraya, T. Emi, T. Imai, K. Emoto, and M. Kodama:Tetsu-to-Hagané, 1981, vol. 67, no. 8, pp. 1220–28.

    CAS  Google Scholar 

  26. A. Suzuki and Y. Nagaoka:J. Japan Inst. Metals, 1969, vol. 33, p. 658.

    Google Scholar 

  27. H. Kumai, K. Asano, T. Ohashi, E. Nomura, and H. Fujii:Tetsu-to-Hagané, 1974, vol. 60, no. 7, pp. 894–914.

    CAS  Google Scholar 

  28. J.K. Brimacombe, J. E. Lait, and F. Weinberg: in proceedings “Mathematical Process Models in Iron- and Steelmaking”, ISI, Amsterdam, Feb. 1973.

  29. M. Wolf:Tetsu-to-Hagané, 1981, vol. 67, p. S904.

    Google Scholar 

  30. N. A. McPherson and R. E. Mercer:Ironmaking and Steelmaking, 1980, vol. 7, pp. 167–79.

    Google Scholar 

  31. T. Okazaki, H. Tomono, T. Ozaki, and Y. Akabane:Tetsu-to-Hagané, 1982, vol. 68, no. 11, p. S929.

    Google Scholar 

  32. H. Oka, Y. Eda, T. Koshikawa, H. Nakato, T. Nozaki, and Y. Hato:Tetsu-to-Hagané, 1983, vol. 69, p. S932.

    Google Scholar 

  33. H. Mizukami, M. Komatsu, T. Kitagawa, K. Kawakami, H. Uchi- Bori, and H. Miyano:Tetsu-to-Hagané, 1983, vol. 69, no. 14, p. S1032.

    Google Scholar 

  34. K. Hamagami, H. Bada, M. Enomoto, M. Kuga, and S. Ohmiya:Tetsu-to-Hagané, 1983, vol. 69, no. 4, p. S162.

    Google Scholar 

  35. M. C. Flemings:Solidification Processing, McGraw-Hill, New York, NY, 1974, pp. 234–39.

    Google Scholar 

  36. T. S. Piwonka and M.C. Flemings:Trans. TMS-AIME, 1966, vol. 236, pp. 1157–65.

    CAS  Google Scholar 

  37. A Handbook on Property of Liquid Iron and Slag, The Iron and Steel Institute of Japan, Tokyo, 1971.

  38. K. Kamakami, T. Kitagawa, K. Murakami, Y. Miyashita, Y. Tsuchida, and K. Kawama:Nippon Kokan Tech. Report, 1983, no. 93, pp. 149–63.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Graduate Student in the Department of Metal-lurgical Engineering, University of British Columbia

An erratum to this article is available at http://dx.doi.org/10.1007/BF02686995.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takeuchi, E., Brimacombe, J.K. Effect of oscillation-mark formation on the surface quality of continuously cast steel slabs. Metall Trans B 16, 605–625 (1985). https://doi.org/10.1007/BF02654859

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02654859

Keywords

Navigation