Skip to main content
Log in

Interfacial tension and flotation characteristics of liquid metal-sodium flux systems

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

Interfacial tensions between two liquid phases are discussed based on Dupre’s and Good’s equations. Thermodynamically, it is argued that the interfacial tension will always be less than the sum of the surface tensions of the two pure phases. The interfacial tensions between different metals and sodium fluxes were measured using the sessile drop technique combined with X-ray radiography. The metal-flux systems studied were Ag, Bi, Cu, Pb, and Sn with NaF, NaCl, Na2CO3, Na3AlF6, and Na2OSiO2. The interfacial tension decreased with temperature for all the systems studied. For a given flux, the highest value of the interfacial tension was obtained for the system with the largest value of the surface tension of the metal. The average value of Good’s interaction parameter was 0.31 for metals and sodium fluxes. The lowest value of the interaction parameter was obtained when using cryolite as flux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.R. Belton:Can. Met. Quart., 1982, vol. 21, pp. 137–43.

    CAS  Google Scholar 

  2. R.J. Fruehan and L.J. Martonik:Metall. Trans. B, 1980, vol. 11B, pp. 615–21.

    Article  CAS  Google Scholar 

  3. F. Anhuth:Erzmetall, 1977, vol. 30, pp. 231–33.

    CAS  Google Scholar 

  4. K. Grjotheim, C. Krohn, M. Malinovsky, K. Matiasovsky, and J. Thonstad:Aluminum Electrolysis, 2nd ed., Aluminum-Verlag, Duesseldorf, Germany, 1982, p. 265.

    Google Scholar 

  5. J. Thonstad, F. Nordmo, and K. Vee:Electrochim. Acta, 1973, vol. 18, pp. 27–32.

    Article  CAS  Google Scholar 

  6. R. Minto and W.G. Davenport:Trans. Inst. Min. Metall., 1972, vol. 81, pp. C36–42.

    Google Scholar 

  7. A. Dupre: “Theorie Mechanique de la Chaleur,” Gauthier-Villars, Paris, 1869, p. 369.

  8. G. Antonow:J. Chim. Phys., 1907, vol. 5, pp. 372–85.

    CAS  Google Scholar 

  9. D.J. Donahue and F. E. Bartell:J. Phys. Chem., 1952, vol. 56, pp. 480–84.

    Article  CAS  Google Scholar 

  10. A. W. Actamson: “Physical Chemistry of Surfaces,” 2nd Edition, Interscience Publishers, New York, NY, 1967, p. 4.

    Google Scholar 

  11. N. K. Actam: “The Physics and Chemistry of Surfaces,” Dover Publications Inc., New York, NY, 1968, p. 214.

    Google Scholar 

  12. D. Berthelot:Comput. rend., 1898, vol. 126, pp. 1703–08.

    Google Scholar 

  13. L.A. Girifalco and R.J. Good:J. Phys. Chem., 1957, vol. 61, pp. 904–09.

    Article  CAS  Google Scholar 

  14. R. Lorenz and H. Adler:Z. Anorg. Chemie, 1928, vol. 173, pp. 324–36.

    Article  CAS  Google Scholar 

  15. K. Keskinen, A. Taskinen, and K. Lilius:Scand. J. of Metallurgy, 1984, vol. 13, pp. 11–14.

    CAS  Google Scholar 

  16. K. Mukai, I. Kodama, and J. Yoshitomi:Proc, Symposium on Quality Control in Non-Ferrous Pyrometallurgy Processes, CIM 24th Annual Conf. of Metallurgists, Aug. 18, 1985, Vancouver, BC, CanActa, pp. 274-84.

  17. R.J. Good and E. Elbing:Chemistry and Physics of Interfaces, II., Amer. Chem. Soc, Washington, DC, 1971, pp. 72–96.

    Google Scholar 

  18. J.F. Elliott and M. Mounier:Can. Met. Quart., 1982, vol. 21, pp. 415–28.

    CAS  Google Scholar 

  19. K. Ogino, S. Hara, T. Miwa, and S. Kimoto:Trans. ISIJ, 1984, vol. 24, pp. 522–31.

    Google Scholar 

  20. H. Gaye, L. D. Lucas, M. Olette, and P. V. Riboud:Can. Met. Quart., 1984, vol. 23, pp. 179–91.

    CAS  Google Scholar 

  21. B.J. Keene, K.C. Mills, J.W. Bryand, and E. D. Honduras:Can. Met. Quart., 1982, vol. 21, pp. 393–403.

    CAS  Google Scholar 

  22. C. K. McKenzie, R. Minto, and W. G. Davenport:Can. Met. Quart., 1975, vol. 14, pp. 191–97.

    CAS  Google Scholar 

  23. E.W. Dewing and P. Desclaux:Metall. Trans. B, 1977, vol. 8B, pp. 555–61.

    CAS  Google Scholar 

  24. T. Utigard and J.M. Toguri:Metall. Trans. B, 1985, vol. 16B, pp. 333–38.

    Article  CAS  Google Scholar 

  25. T. Utigard: Ph.D. Thesis, University of Toronto, Toronto, ON, CanActa, 1985.

    Google Scholar 

  26. P. Kozakevitch and G. Urbain:J. Iron Steel Inst., 1957, vol. 186, pp. 167–73.

    CAS  Google Scholar 

  27. K. Ogino, A. Nishiwaki, and S. Hara:Osaka Yakinkai Kaishi, 1973, vol. 13, p. 110.

    Google Scholar 

  28. Y. Rotenberg, L. Boruvka, and A.W. Neumann:J. Colloid Interface Sci., 1983, vol. 93, pp. 169–83.

    Article  CAS  Google Scholar 

  29. T. Fujisawa, T. Utigard, and J.M. Toguri:Can. J. Chem., 1985, vol. 63, pp. 1132–38.

    Article  CAS  Google Scholar 

  30. S.M. Kaufmann and T.J. Whalen:Acta Metall., 1965, vol. 13, pp. 797–805.

    Article  Google Scholar 

  31. F. Bashforth and J.C. Actams: “An attempt to test the theories of capillary action,” Cambridge University Press, Cambridge, 1892.

    Google Scholar 

  32. H. C. Maru, D. T. Wasan, and R. C. Kintner:Chem. Engineering Science, 1971, vol. 26, pp. 1615–28.

    Article  CAS  Google Scholar 

  33. A. V. Rapacchietta and A. W. Neumann:J. Colloid and Interface Science, 1977, vol. 59, pp. 555–67.

    Article  Google Scholar 

  34. A. V, Rapacchietta, A. W. Neumann, and S. N. Omenyi:, 1977, vol. 59, pp. 541–54.

    Article  Google Scholar 

  35. A. D. Kirshenbaum, J. A. Cahill, and A. V. Grosse:J. Inorg. Nucl. Chem., 1962, vol. 24, pp. 333–36.

    Article  CAS  Google Scholar 

  36. E. Pelzel:Z. Metallkunde, 1959, vol. 50, pp. 392–95.

    CAS  Google Scholar 

  37. L. Zimmermann and H. Esser:Arch. f. Eisenh., 1929, vol. 2, pp. 867–70.

    CAS  Google Scholar 

  38. T. R. Hogness:J. Amer. Chem. Soc, 1921, vol. 43, pp. 1621–28.

    Article  CAS  Google Scholar 

  39. K. Pokrovski and M. Saidov:Zh. Fiz. Khim., 1955, vol. 29, pp. 1601–09.

    Google Scholar 

  40. E. T. Turkdogan: “Physical Chemistry of High Temperature Technology,” Academic Press, New York, NY, 1980.

    Google Scholar 

  41. J.D. Edwards, C.S. Taylor, L.A. Cosgrove, and A.S. Russel:J. Electrochem. Soc, 1953, vol. 100, pp. 508–12.

    Article  CAS  Google Scholar 

  42. G. J. Janz, F. W. Dampier, G. R. Lakshminarayanan, P. K. Lorenz, and R. P. T. Tomkins:Molten Salts, Vol. 1,Electrical Conductance,Density and Viscosity Data, National Bureau of Standards, No. 15, 1968.

  43. G.J. Janz and M.R. Lorenz:J. Electrochem. Soc, 1961, vol. 108, pp. 1052–58.

    Article  CAS  Google Scholar 

  44. K. Matiasovsky, M. Malinovsky, M. Paucirova, and V. Danek:Hutnicke Listy, 1970, vol. 25, pp. 40–45.

    Google Scholar 

  45. J.O’M. Bockris, J.W. Tomlinson, and J.L. White:Trans. FarActay Soc, 1956, vol. 52, pp. 299–310.

    Article  CAS  Google Scholar 

  46. H. Bloom and B.W. Burrows:Proc. First Australian Conf. Electrochem., Sydney, Hobart, Australia, Pergamon Press, 1963, pp. 882–88 (Pub. 1965).

    Google Scholar 

  47. G.J. Janz, G.M. Dijkhuis, G.R. Lakshminarayanan, R.P.T. Tomkins, and J. Wong:Molten Salts, U.S. Dept. of Commerce, National Bureau of Standards, 1969, vol. 2.

  48. T. B. King: in “The Physical Chemistry of Melts,” A Symposium, Instn. Min. Metall., London, 1953, pp. 35–45.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Utigard, T., Toguri, J.M. & Nakamura, T. Interfacial tension and flotation characteristics of liquid metal-sodium flux systems. Metall Trans B 17, 339–346 (1986). https://doi.org/10.1007/BF02655081

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02655081

Keywords

Navigation