Skip to main content
Log in

Hydrogen assisted ductile fracture of spheroidized carbon steels

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The effects of hydrogen on ductile fracture were studied in two spheroidized plain carbon steels, containing 0.16 and 0.79 pct C. A combination of fractography and quantitative metallography on sectioned, deformed specimens permitted separation of the effects of hydrogen on the initiation, growth, and link-up of voids. In both steels, hydrogen was found to have no significant effect on either the initiation of voids at carbides, or early growth of voids, prior to link-up. In the higher carbon steel the fracture surface dimple size increased after hydrogen exposure with no other evident change in the fracture surface appearance; it is therefore inferred that hydrogen primarily assists void growth during link-up in this steel. In the lower carbon steel the fracture appearance changed and a decrease in void size due to hydrogen was found fractographically; thus, both initiation and growth of voids are apparently enhanced during the link-up phase of fracture in this steel. It is hypothesized that these effects may be due largely to a void pressure mechanism if hydrogen is transported by mobile dislocations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. M. Bernstein and A. W. Thompson:Int. Metall. Rev., 1976, vol. 21, pp. 269–87.

    CAS  Google Scholar 

  2. A. W. Thompson:Effect of Hydrogen on Behavior of Materials, A. W. Thompson and I. M. Bernstein, eds., pp. 467–77, TMS-AIME, New York, 1976.

    Google Scholar 

  3. I. M. Bernstein, R. Garber, and G. M. Pressouyre:ibid, pp. 37–57.

  4. R. Garber, I. M. Bernstein, and A. W. Thompson:Scr. Metall., 1976, vol. 10, pp. 341–45.

    Article  CAS  Google Scholar 

  5. A. S. Argon and J. Im:Met. Trans. A, 1975, vol. 6A, pp.839–51.

    CAS  Google Scholar 

  6. H. C. Rogers:Ductility, pp. 31–61, ASM, Metals Park, OH, 1968.

    Google Scholar 

  7. R. H. Van Stone and T. B. Cox:Fractography-Microscopic Cracking Processes, ASTM STP 600, pp. 5–28, American Society for Testing and Materials, 1976.

    Google Scholar 

  8. R. H. Lauderdale:Met. Prog., 1967, vol. 88, December, pp. 79–81.

    Google Scholar 

  9. K. Farrell:Corrosion, 1970, vol. 26, pp. 105–110.

    CAS  Google Scholar 

  10. J. McBreen, L. Nanis, and W. Beck:J. Electrochem. Soc, 1966, vol. 113, p. 1218–22.

    Article  Google Scholar 

  11. W. M. Robertson and A. W. Thompson:Met. Trans. A, 1980, vol. 11 A, pp. 553–57.

    Google Scholar 

  12. J. Crank:The Mathematics of Diffusion, 2nd ed., p. 74, Clarendon Press, Oxford, 1975.

    Google Scholar 

  13. Y. Sakamoto and T. Mantani:Trans. Jpn. Inst. Met., 1976, vol. 17, pp. 743–48.

    CAS  Google Scholar 

  14. J. E. Hilliard:Trans. TMS-AIME, 1962, vol. 224, pp. 1201–11.

    Google Scholar 

  15. J. B. Seabrook, N. J. Grant, and D. Carney:Trans. AIME, 1950, vol. 188, pp. 1317–21.

    CAS  Google Scholar 

  16. A. S. Argon, J. Im, and A. Needleman:Met. Trans. A, 1975, vol. 6A, pp. 915–24.

    Google Scholar 

  17. H. Cialone and R. H. Asaro:Met. Trans. A, 1979, vol. 10A, pp. 367–75.

    CAS  Google Scholar 

  18. A. S. Argon, J. Im, and R. Safoglu:Met. Trans. A, 1975, vol. 6A, pp. 825–38.

    CAS  Google Scholar 

  19. T. Gladman, B. Holmes, and I. M. Mclvor:Effect of Second-Phase Particles on the Mechanical Properties of Steel, pp. 68–78, Iron and Steel Institute, London, 1971.

    Google Scholar 

  20. H. C. Rogers:Trans. TMS-AIME, 1960, vol. 218, pp. 498–506.

    Google Scholar 

  21. A. W. Thompson:Met. Trans. A, 1979, vol. 10A, pp. 727–31.

    CAS  Google Scholar 

  22. C. D. Beachem:J. Basic Eng. (Trans. ASME, Series D), 1965, vol. 87, pp. 299–306.

    CAS  Google Scholar 

  23. A. W. Thompson and I. M. Bernstein:Fracture 1977, Proc. 4th Int. Conf. on Fracture, vol. 2, pp. 249–54, University of Waterloo Press, Waterloo, Ont., 1977.

    Google Scholar 

  24. F. A. McClintock:J. Appl. Mech. (Trans. ASME, Series E), 1968, vol. 35, pp. 363–71.

    Google Scholar 

  25. J. R. Rice and D. M. Tracey:J. Mech. Phys. Solids, 1969, vol. 17, pp. 201–17.

    Article  Google Scholar 

  26. D. M. Tracey:Eng. Fract. Mech., 1971, vol. 3, pp. 301–15.

    Article  Google Scholar 

  27. A. S. Tetelman:Fracture of Solids, D. C. Drucker and J. J. Gilman, eds., pp. 671–708, Gordon and Breach, New York, 1963.

    Google Scholar 

  28. C. Zappfe and C. Sims:Trans. AIME, 1941, vol. 145, pp. 225–59.

    Google Scholar 

  29. P. W. Bridgman:Studies in Large Plastic Flow and Fracture, McGraw-Hill, New York, 1952.

    Google Scholar 

  30. T. E. Davidson and G. S. Ansell:Trans. ASM, 1968, vol. 61, pp. 242–54.

    CAS  Google Scholar 

  31. J. K. Tien, A. W. Thompson, I. M. Bernstein, and R. J. Richards:Met. Trans. A, 1976, vol. 7A, pp. 821–29.

    Article  CAS  Google Scholar 

  32. J. K. Tien:Effect of Hydrogen on Behavior of Materials, A. W. Thompson and I. M. Bernstein, eds., pp. 309–25, TMS-AIME, New York, 1976.

    Google Scholar 

  33. H. H. Johnson and J. P. Hirth:Met. Trans. A, 1976, vol. 7A, pp. 1543–48.

    CAS  Google Scholar 

  34. T. D. Lee, T. Goldenberg, and J. P. Hirth:Met. Trans. A, 1979, vol. 10A, pp. 199–208.

    CAS  Google Scholar 

  35. I. M. Bernstein and A. W. Thompson:Mechanisms of Environment-Sensitive Cracking of Materials, pp. 412–26, Metals Society, London, 1978.

    Google Scholar 

  36. C. D. Beachem:Met. Trans., 1972, vol. 3, pp. 437–51.

    CAS  Google Scholar 

  37. A. W. Thompson:Environment-Sensitive Fracture of Engineering Materials, Z. A. Foroulis, ed., pp. 379–410, TMS-AIME, Warrendale, PA, 1979.

    Google Scholar 

  38. A. W. Thompson and I. M. Bernstein:Advances in Corrosion Science and Technology, R. W. Staehle, ed., vol. 7, pp. 53–175, Plenum, New York, 1980.

    Google Scholar 

  39. H. Y. Yu and J. C. M. Li:Computer Simulation for Materials Applications, R. J. Arsenaultet al, eds., pp. 872–81, TMS-AIME, New York, 1976.

    Google Scholar 

  40. F. A. McClintock:Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys, R. W. Staehleet al, eds., pp. 455–72, NACE, Houston, TX, 1977.

    Google Scholar 

  41. D. E. Passoja and D. C. Hill:Fractography-Microscopic Cracking Processes, ASTM STP 600, pp. 30–46, American Society for Testing and Materials, Philadelphia, 1976.

    Google Scholar 

  42. A. Melander:Mater. Sci. Eng., 1979, vol. 39, pp. 57–63.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formaly Graduate Student, Department of Metallurgy and Materials Science, Carnegie-Mellon University

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garber, R., Bernstein, I.M. & Thompson, A.W. Hydrogen assisted ductile fracture of spheroidized carbon steels. Metall Trans A 12, 225–234 (1981). https://doi.org/10.1007/BF02655195

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02655195

Keywords

Navigation