Skip to main content
Log in

Control of ordering in GaInP and effect on bandgap energy

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

GaxIn1-x P layers with x ≈ 0.5 have been grown by atmospheric pressure organometallic vapor phase epitaxy on GaAs substrates with 10 micron wide, [110]-oriented grooves produced photolithographically on the surface. The [110] steps and the misorientation produced at the edges of the grooves have been found to have important effects on the formation of the Cu-Pt ordered structure (ordering on {111} planes) in the GaInP layers during growth. In this work, the groove shape is demonstrated to be critically important. For the optimum groove shape, with a maximum angle to the (001) surface of between 10 and 16°, single domains of the (-111) and (1-11) variants of the Cu-Pt ordered structure are formed on the two sides of the groove. Shallow (≤0.25 μm deep) grooves, with maximum angles of <10°, are less effective. Within the large domains on each side of the groove, small domains of the other variant are observed. The boundary between the two domains is seen to wander laterally by a micron or more during growth, due to the change in shape of the groove during growth. For deep (1.5 μm) grooves, with maximum angles to the (001) plane of 35°, only a single variant is formed on each side of the groove. However, the domains are small, dispersed in a disordered matrix. For substrates with deep grooves on a GaAs substrate misoriented by 9° toward the [-110] direction, an interesting and useful pattern is produced. One half of the groove is a single domain which shrinks in size as the growth proceeds. The other half of the groove, where the misorientation is larger, is disordered. Thus, every groove contains large (>1 μm2 cross-sectional area and several mm long) regions of highly ordered and completely disordered material separated by no more than a few microns. This allows a direct determination of the effect of ordering on the bandgap of the material using cathodoluminescence (CL) spectroscopy. The 10K photoluminescence (PL) consists of three distinct peaks at 1.94, 1.88, and 1.84 eV. High resolution CL images reveal that the peaks come from different regions of the sample. The high energy peak comes from the disordered material and the low energy peak comes from the large ordered domains. Electron microprobe measurements of the solid composition demonstrate that the shift in emission energy is not due to changes in solid composition. This is the firstdirect verification that ordering causes a reduction in bandgap of any III/V alloy. Decreasing the Ga0.5In0.5P growth rate from the normal 2.0 to 0.5 μ/h is found to enhance ordering in layers grown on planar GaAs substrates. Transmission electron diffraction results show that the domain size also increases significantly. For material grown on exactly (001)-oriented substrates, a pronounced [001] streaking of the superlattice spots is observed. This is correlated with the presence of a dense pattern of fine lines lying in the (001) plane in the transmission electron micrographs. The PL of this highly ordered material consists of a single peak that shifts to higher energy by > 110 meV as the excitation intensity is increased by several orders of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.B. Stringfellow,J. Cryst. Growth 98, 108 (1989); G.B. Stringfellow and G.S. Chen,J. Vac. Sci. Technol. B9, 2182 (1991).

    Article  CAS  Google Scholar 

  2. T.S. Kuan, T.F. Kuech, W.I. Wang and E.L. Wilkie,Phys. Rev. Lett. 54, 201 (1985).

    Article  CAS  Google Scholar 

  3. H.R. Jen, M.J. Cherng and G.B. Stringfellow,Appl. Phys. Lett. 48, 1603 (1986).

    Article  CAS  Google Scholar 

  4. A. Gomyo, T. Suzuki. K. Kobayashi, S. Kawata, I. Hino and T. Yuasa,Appl. Phys. Lett. 50, 673 (1987).

    Article  CAS  Google Scholar 

  5. O. Ueda, M. Takikawa, J. Komeno and I. Umebu,Jpn. J. Appl. Phys. 26, L 1824 (1987).

    Article  Google Scholar 

  6. J.P. Goral, M.M. Al-Jassim, J.M. Olsen and A. Kibbler,Epitaxy of Semiconductor Layered Structures (Pittsburgh, PA: Materials Research Society, 1988) p. 583.

    Google Scholar 

  7. T. Fukui,Jpn. J. Appl. Phys 23, L208(1984); T. Fukui,J. Appl. Phys. 57, 5188 (1985); J.L. Martins and A. Zunger,Phys. Rev. B30, 6217 (1984); M. Ichimura and A. Sasaki,J. Appl. Phys. 60 3850 (1986).

    Article  Google Scholar 

  8. S.H. Wei and Z. Zunger,Phys. Rev. B 39, 3279 (1989).

    Article  CAS  Google Scholar 

  9. T. Suzuki, A. Gomyo and S. Iijima,J. Cryst. Growth 93, 396 (1988).

    Article  CAS  Google Scholar 

  10. R.P. Schneider, E.D. Jones, J.A. Lott and R.P. Bryan,J. Appl. Phys. 72, 5397 (1992).

    Article  CAS  Google Scholar 

  11. M. Ikeda, E. Morita, A. Toda, T. Yamamoto and K. Kaneko,Elecron. Lett. 24, 1094 (1988); A. Valster, C.T.H.F. Liedenbaum, N.M. Finke, A.L.G. Severens, M.J.B. Boermans, D.W.W. Vandenhoudt and C.W.T. Bulle-Lieuwma,J. Cryst. Growth 107, 403 (1991).

    Article  Google Scholar 

  12. S.H. Wei and A. Zunger,Appl. Phys. Lett. 58, 2684 (1991).

    Article  CAS  Google Scholar 

  13. Y. Inoue, T. Nishino, Y. Hamakawa, M. Kondow and S. Minagawa,Optoelectronics-Devices and Technologies 3, 61 (1988).

    CAS  Google Scholar 

  14. A. Gomyo, K. Kobayashi, S. Kawata, I. Hino, T. Suzuki and T. Yuasa,J. Cryst. Growth 77, 367 (1986).

    Article  CAS  Google Scholar 

  15. M. C. Delong, P.C. Taylor and J.M. Olson,Appl. Phys. Lett. 57, 620 (1990).

    Article  CAS  Google Scholar 

  16. M.C. Delong, W.D. Ohlsen, I. Viohl, P.C. Taylor and J.M. Olson,J. Appl. Phys. 70, 2780 (1991).

    Article  CAS  Google Scholar 

  17. I.J. Murgatroid, A.G. Norman, and G.R. Booker,J. Appl. Phys. 67, 2310 (1990).

    Article  Google Scholar 

  18. G.B. Stringfellow and G.S. Chen,J. Vac. Sci. Technol. B9, 2182 (1991).

    Google Scholar 

  19. D.J. Chady,J.Vac. Sci. Technol. A5, 834 (1987).

    Google Scholar 

  20. S. Froyen and A. Zunger,Phys. Rev. Lett. 66, 2132 (1991).

    Article  CAS  Google Scholar 

  21. S.B. Ogale, A. Madhukar, S.Y. Joshi and R. Vishwanathan, J.Vac. Sci. Technol. B 10, 1689 (1992).

    Article  Google Scholar 

  22. H.R. Jen, M.J. Cherng and G.B. Stringfellow,Inst. of Phys. Conf. Ser. 83, 159(1987).

    Google Scholar 

  23. D.S. Cao, A.W. Kimball, G.S. Chen, K.L. Fry and G. B. Stringfellow,J. Appl. Phys. 66, 5384 (1989).

    Article  CAS  Google Scholar 

  24. G.S. Chen and G.B. Stringfellow,Appl. Phys. Lett. 59, 324 (1991).

    Article  CAS  Google Scholar 

  25. G.S. Chen and G.B. Stringfellow,Appl. Phys. Lett. 59, 3258 (1991).

    Article  CAS  Google Scholar 

  26. T.Y. Wang, H.R. Jen. G.S. Chen and G.B. Stringfellow,J. Appl. Phys. 67, 563 (1990).

    Article  CAS  Google Scholar 

  27. T. Tarui, Y. Komiya and Y. Harada,J. Electrochem. Soc. 118, 118 (1971).

    Article  CAS  Google Scholar 

  28. J. Christen and D. Bimberg,Oyo Buturi 57, 69 (1988).

    Google Scholar 

  29. J. Christen, M. Grundmann and D. Bimberg,J. Vac. Sci. Technol. B9, 2358 (1991).

    Google Scholar 

  30. S.D. Hersee, E. Barbier and R. Blondeaqu,J. Cryst. Growth 77, 310 (1986).

    Article  CAS  Google Scholar 

  31. B. Garrett and E.J. Thrush,J. Cryst. Growth 97 273 (1989).

    Article  CAS  Google Scholar 

  32. G.B. Stringfellow,Common Themes and Mechanisms of Epitaxial Growth, Vol. 312, ed. P. Fuoss, J. Tsao, D.W. Kisker, A. Zangwill and T.F. Kuech, (Pittsburgh, PA: Materials Research Society, 1993), p. 35.

    Google Scholar 

  33. L.C. Su, S.T. Pu, G.B. Stringfellow, J. Christen, H. Selber and D. Bimberg,AppZ.Phys. Lett.63, 3496 (1993).

    Article  Google Scholar 

  34. C.P. Kuo, S.K. Vong, R.M. Cohen and G.B. Stringfellow,J. Appl. Phys. 57, 5428 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, L.C., Pu, S.T., Stringfellow, G.B. et al. Control of ordering in GaInP and effect on bandgap energy. J. Electron. Mater. 23, 125–133 (1994). https://doi.org/10.1007/BF02655258

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02655258

Key words

Navigation