Skip to main content
Log in

Fluid flow and bath temperature destratification in gas-stirred ladles

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

The transient fluid flow and temperature distributions in argon-stirred ladles have been investigated. The governing equations of unsteady fluid flow and energy were solved numeri-cally with a control-volume technique, while the turbulence was modeled by the two-equationk- ∃ model. The two-phase zone was described by novel experimental equations, which char-acterize the gas-fraction distribution in the bath for a wide range of variables in both aqueous and liquid metal systems. Fully transient computational results are presented and compared against transient temperature computations based on a steady-state velocity field. The resulting mixing times compare closely with industrial experience.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C1,C 2 :

constants in the turbulence model

C d C pg ,C pl :

gas specific heat capacity; liquid specific heat capacity, J/kg ‡C

d o :

diameter of nozzle, m Fr Froude number =

Q o 2 /gd o 5 g :

acceleration due to gravity, m/s2

G :

generation of turbulent energy, kg/m s3

h b :

depth of liquid, m

k :

turbulence kinetic energy, m2/s2

k :

thermal conductivity of liquid, W/(m ‡C)

N :

parameter defined as

[(gdo 5/Qo 2)0.26(pl/pgo)0.13(z/do)0.94]:

(Eqs. [11] and [12])

p :

pressure, kg/m s2

q s ,q wb :

heat flux through bath surface; heat flux through ladle refractory wall, W/m2 go volumetric gas flow rate at orifice conditions, m3/s

r :

rα max/2 radial position; half-value radius, m

R :

radius of vessel, m

R Ø :

residuals in the discretized Ø equation

t :

time, s

T :

temperature, ‡C

T :

refreference temperature appearing in the buoyancy term

u :

mean axial velocity component, m/s

v mean radial velocity component, m/s:

z axial position, m

α,αmax local time-averaged gas volume fraction; gas volume fraction at plume centerline:

Βl, coefficient of thermal expansion of

liquid, ‡C-1 dissipation rate of turbulence kinetic energy, m2/s3 :

Μ, Μeff

molecular, effective, and turbulent viscosity:

Μ l

kg/m s:

P go ,P l

gas density at orifice conditions; liquid p density; density of two-phase mixture, kg/m3 :

ΣT, ΣT,t

laminar and turbulent Prandtl numbers and:

Σ k ,Σ te

Schmidt numbers for:

k and ∃

reff effective exchange coefficient (diffusivity), kg/m s:

v t

turbulent kinematic viscosity:

m2/s

References

  1. S. Soeda, H. Nemoto, E. Sakamoto, T. Kawawa, and T. Koyano:Suppl. Trans. ISIJ, 1971, vol. 11, pp. 248–51.

    Google Scholar 

  2. R. Albemy and A. Leclercq:Proc. of Mathematical Process Models in Iron and Steelmaking, TMS, London, 1973, pp. 151–56.

    Google Scholar 

  3. D.A. Domchek:J. Met., 1972, vol. 24 (3), pp. 38–42.

    Google Scholar 

  4. R. Widdowson:Ironmaking and Steelmaking, 1981, vol. 8 (5), pp. 194–200.

    Google Scholar 

  5. H.W. den Hartog, S. Rosier, A.B. Snoeijer, and H.M. Verhoog:Proc. of Mathematical Process Models in Iron and Steelmaking, TMS, London, 1973, pp. 213–18.

    Google Scholar 

  6. O.J. Ilegbusi and J. Szekely:Trans. ISIJ, 1987, vol. 27, pp. 563–69.

    CAS  Google Scholar 

  7. M.E. Salcudean, K.Y.M. Lai, and R.I.L. Guthrie:Can. J. Chem. Eng., 1985, vol. 63, pp. 51–61.

    Article  CAS  Google Scholar 

  8. T. DebRoy and A.K. Majumdar:J. Met., 1981, vol. 33 (11), pp. 42–47.

    Google Scholar 

  9. J. Szekely, H.J. Wang, and K.M. Riser:Metall. Trans. B, 1976, vol. 7B, pp. 287–95.

    CAS  Google Scholar 

  10. J.H. Grevet, J. Szekely, and N. El-Kaddah:Int. J. Heat Mass Transfer, 1982, vol. 25, pp. 487–97.

    Article  Google Scholar 

  11. J.W. McKelliget, M. Cross, R.D. Gibson, and J.K. Brimacombe:Symp. on Heat and Mass Transfer in Metallurgical Systems, D.B. Spalding and N.H. Afgan, eds., Hemisphere Publishing Corp., New York, NY, 1981, pp. 349–72.

    Google Scholar 

  12. T. DebRoy, A.K. Majumdar, and D.B. Spalding:Appl. Math. Modelling, 1978, vol. 2, pp. 146–50.

    Article  Google Scholar 

  13. Y. Sahai and R.I.L. Guthrie:Metall. Trans. B, 1982, vol. 13B, pp. 203–11.

    CAS  Google Scholar 

  14. J.S. Woo, J. Szekely, A.H. Castillejos, and J.K. Brimacombe:Metall. Trans. B, in press.

  15. A.H. Castillejos and J.K. Brimacombe:Metall. Trans. B, 1987, vol. 18B, pp. 649–58 and 659-71.

    CAS  Google Scholar 

  16. K.Y.M. Lai and M.E. Salcudean:Comput. Fluids, 1987, vol. 15 (3), pp. 281–95.

    Article  CAS  Google Scholar 

  17. M.E. Salcudean and K.Y.M. Lai:Int. J. Num. Heat Transfer, in press.

  18. A.H. Castillejos E. and J.K. Brimacombe:Metall. Trans. B, 1989, vol. 20B, pp. 595–601.

    Google Scholar 

  19. K. Nakanishi, T. Fuji, and J. Szekely:Ironmaking and Steel- making, 1975, vol. 2 (3), pp. 193–97.

    CAS  Google Scholar 

  20. O. Haida and J.K. Brimacombe:3rd Int. Conf. on Injection Met- allurgy, Luleå, Sweden, 1983, vol. 1, pp. 5:1–5:17.

    Google Scholar 

  21. W.R. Irving:Proc. of Mathematical Process Models in Iron and Steelmaking, TMS, London, 1973, pp. 218–19.

    Google Scholar 

  22. W.P. Jones and B.E. Launder:Int. J. Heat Mass Transfer, 1972, vol. 15, pp. 301–14.

    Article  Google Scholar 

  23. B.E. Launder and D.B. Spalding:Comput. Math. Appl. Mech. Eng., 1974, vol. 3, pp. 269–89.

    Article  Google Scholar 

  24. A.D. Gosman, V.M. Pun, H.E. Runchal, D.B. Spalding, and M. Wolfstein:Heat and Mass Transfer in Recirculating Flows, Academic Press, London, 1969.

    Google Scholar 

  25. D.B. Spalding:Int. J. Numer. Math. Meth. Eng., 1972, vol. 6, pp. 551–59.

    Article  Google Scholar 

  26. S.V. Patankar and D.B. Spalding:Int. J. Heat Mass Transfer, 1972, vol. 15, pp. 1787–806.

    Article  Google Scholar 

  27. A.D. Gosman and F.D.K. Ideriah:TEACH-2E: A General Com- puter Program for Two Dimensional Turbulent Recirculating Flow, Internal Report Department of Mechanical Engineering, Imperial College, University of London, 1976.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

A.H. Castillejos E., formerly Postdoctoral Fellow, The University of British Columbia,.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castillejos, A.H., Salcudean, M.E. & Brimacombe, J.K. Fluid flow and bath temperature destratification in gas-stirred ladles. Metall Trans B 20, 603–611 (1989). https://doi.org/10.1007/BF02655917

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02655917

Keywords

Navigation