Skip to main content
Log in

A coherent model for deep-level photoluminescence of cu-contaminated n-type gaas single crystals

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A comparative study of the 77 K PL spectra of about one hundred n-type GaAs single crys-tals, grown by the horizontal or Czochralski technique, shows that the principal native defects in the former (in the “as-grown” state) are As-vacancies, whereas Ga-vacancies are dominating the latter (2). Besides the VGa, copper appears as the major acceptor contaminant in these crystals and is respon-sible for the 0.83 eV peak. Association of Cu and/or VGa with VAs and/or dopant atoms tends to neutralise this compensation. Considering the contradicting attributions found in the literature, new definitions of the nature of some centers responsible for the deep-level PL were needed to fit with the experimental da-ta. Thus the center yielding the 1.35 eV, PL-band, usually identified as substitutional copper, has to be defined here as the As-va-cancy associated defect complex: (VAs+Cu=VAs+) Similarly the 1.295 eV PL is associated with the (Te+Cu=VAs+ complex and the often en-countered level at 1.22 eV is identified as the (Si+Cu=VAs +) complex. These levels, to-gether with the better known ones at 0.83, 0.96, 1.02, 1.17, 1.19 eV are linked in a coherent model which can account for the ap-pearance and the relative amplitude of the different PL peaks observed, as a result of the doping and the thermal history of the crystals during growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.W. Wiliams, Semicond. & Semi-Metals, vol. 8, chap. 5, Acad.Press, N.Y. 1972.

  2. H.J. Gupuislain, L.Dupe Wupolf and P. Cuplauws, J.Electron.Mater.6, 544 (1977).

    Google Scholar 

  3. E.W. Wupilliams, Phys. Review,168 3 922, (1968).

    Article  Google Scholar 

  4. K.D. GLINCHUK, Phys.Stat.Sol. (a),18-K23, (1973).

    Article  CAS  Google Scholar 

  5. G.P. Peka, Sov. Phys. Semicond.,7-8-1100, (1974).

    Google Scholar 

  6. Z.I. ALFEROV, Sov. Phys. Semicond.2-10- 1204, (1969).

    Google Scholar 

  7. V.A. BRODOVOI, Sov. Phys. Solid State,13- 8-2015, (1972).

    Google Scholar 

  8. A.T. GORELENOK, Sov. Phys. Semicond.,2-5- 551, (1968).

    Google Scholar 

  9. E.S. JOHNSON, J. Cryst. Growth,30-249, (1975).

    Article  CAS  Google Scholar 

  10. P.R. DASTIDAR, Electronics Letters,5, 22, 553, (1969).

    Article  CAS  Google Scholar 

  11. F. WILLMANN, Solid State Comm.,9, 2281, (1971).

    Article  CAS  Google Scholar 

  12. F. WILLMANN, Phys. Review,B7, 2473, (1973).

    Google Scholar 

  13. Z.I. ALFEROV, Sov. Phys. Solid State,8-11, 2589, (1967).

    Google Scholar 

  14. V.V. BATAVIN, Sov. Phys.Semicond.,6-10- 1616, (1973).

    Google Scholar 

  15. J. NISHIZAWA, J. Appl. Phys.,44-4-1638, (1973).

    Article  CAS  Google Scholar 

  16. Y.V. MARONCHUK, Sov. Phys. Semicond.,6-8- 1400, (1973).

    Google Scholar 

  17. R.Wupillardson, Symp. on GaAs, 35, 1966.

  18. B.A. KOLESOV, Sov. Phys. Semicond.,8-4- 425, (1974).

    Google Scholar 

  19. B.A. KOLESOV, Sov. Phys. Semicond.,9-2- 163, (1975).

    Google Scholar 

  20. G.P. PEKA, Sov. Phys. Semicond.,5-9-1592, (1972).

    Google Scholar 

  21. M. JEONG, Jap. J. Appl. Phys.,12-1-109, (1973).

    Article  CAS  Google Scholar 

  22. C.J. HWANG, J. Appl. Phys.39-9-4313, (1968).

    Article  CAS  Google Scholar 

  23. C.J. HWANG, J. Appl. Phys.,39-9-4307, (1968).

    Article  CAS  Google Scholar 

  24. V.A. BRODOVOI, Sov. Phys. Semicond.,4-11- 1770, (1971).

    Google Scholar 

  25. T. RISBAEV, Sov. Phys. Semicond.,6-10- 1709, (1973).

    Google Scholar 

  26. J.C. BURGIEL, J. Appl. Phys.,40-6-2583, (1969).

    Article  CAS  Google Scholar 

  27. J. BLANC, J. Phys. Chem. Sol.,25-221, (1964).

    Article  CAS  Google Scholar 

  28. V.I. SAFAROV, Sov. Phys. Semicond.,4-1- 119, (1970).

    Google Scholar 

  29. V.V. BATAVIN, Sov. Phys. Semicond.,7-9- (1974).

    Google Scholar 

  30. O.V. EMELYANENKO, Sov. Phys. Solid State,7-5-292, (1965).

    Google Scholar 

  31. J. BLANC, J. Appl. Phys.,32-9-1666, (1961)

    Article  CAS  Google Scholar 

  32. F.M. VOROBKALO, Sov. Phys. Semicond.,7-10-1370, (1974).

    Google Scholar 

  33. F. HASEGAWA, J. Appl. Phys.,45-5-1944, (1974).

    Article  CAS  Google Scholar 

  34. C.A. ZAKHAROVA, Sov. Phys. Semicond.,6-1-171, (1972).

    Google Scholar 

  35. E.G. MIL'VIDSKII, Sov. Phys. Semicond.,6-2-194, (1972).

    Google Scholar 

  36. D.S. DOMANEVSKII, Sov. Phys. Semicond.,4-11-1790, (1971).

    Google Scholar 

  37. G.A. ALEXANDROVA, Sov. Phys. Semicond.,6-2-266, (1972).

    Google Scholar 

  38. T ADATSUCU I TOH, J. Appl. Phys.,45-11-4915, (1974).

    Article  Google Scholar 

  39. T.V. AVER'YANOVA, Sov. Phys. Semicond.,5-2-284, (1971).

    Google Scholar 

  40. V.I. VOVNENKO, Sov. Phys. Semicond.,10-6- 652, (1976).

    Google Scholar 

  41. J. ENGEMANN, CRC Crit. Rev. Sol. St. Sc., II, 485, (1975).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guislain, H.J., De Wolf, L. & Clauws, P. A coherent model for deep-level photoluminescence of cu-contaminated n-type gaas single crystals. J. Electron. Mater. 7, 83–108 (1978). https://doi.org/10.1007/BF02656022

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02656022

Key words

Navigation