Skip to main content
Log in

On the calculation of the free surface temperature of gas-tungsten-arc weld pools from first principles: Part I. modeling the welding arc

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

A mathematical formulation has been developed and computed results are presented describing the temperature profiles in gas tungsten arc welding (GTAW) arcs and, hence, the net heat flux from the welding arc to the weld pool. The formulation consists of the statement of Maxwell's equations, coupled to the Navier-Stokes equations and the differential thermal energy balance equation. The theoretical predictions for the heat flux to the workpiece are in good agreement with experimental measurements — for long arcs. The results of this work provide a fundamental basis for predicting the behavior of arc welding systems from first principles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.M. Oreper and J. Szekely:Metall. Trans. A, 1987, vol. 18A, pp. 1325–32.

    Article  Google Scholar 

  2. T. Zacharia, A.H. Eraslan, D. Aidun, and S.A. David:Metall. Trans. B, 1989, vol. 20B, pp. 645–59.

    Article  Google Scholar 

  3. T. Zacharia, A.H. Eraslan, and D.K. Aidun:Weld. J., 1988, vol. 67, pp. 53s-62s.

    Google Scholar 

  4. P. Tekriwal and J. Mazumder:Weld. J., 1988, vol. 67, pp. 150s-156s.

    Google Scholar 

  5. S. Kou and Y.H. Wang:Weld. J., 1986, vol. 65, pp. 63s-70s.

    Google Scholar 

  6. RTC. Choo, J. Szekely, and R.C. Westhoff:Weld. J., 1990, vol. 66, pp. 346s-361s.

    Google Scholar 

  7. P. Kovitya and L.E. Cram:Weld. J., 1986, vol. 65 (12), pp. 34–39.

    Google Scholar 

  8. M.C. Tsai and Sindo Kou:Int. J. Heat Mass Transfer, 1990, vol. 33 (10), pp. 2089–98.

    Article  Google Scholar 

  9. G.M. Oreper, T.W. Eagar, and J. Szekely:Weld. J., 1983, vol. 62, pp. 307s-312s.

    Google Scholar 

  10. A. Block-Bolten and T.W. Eagar: inTrends in Welding Research in U.S., S.A. David, ed., ASM, Metal Parks, OH, 1982, pp. 53–73.

    Google Scholar 

  11. A. Block-Bolten and T.W. Eagar:Metall. Trans. B, 1984, vol. 15B, pp. 461–69.

    Article  Google Scholar 

  12. K.C. Hsu, K. Etemadi, and E. Pfender:J. Appl. Phys., 1983, vol. 54, pp. 1293–1301.

    Article  Google Scholar 

  13. K.C. Hsu and E. Pfender:J. Appl. Phys., 1983, vol. 54, pp. 4359–66.

    Article  Google Scholar 

  14. J. McKelliget and J. Szekely:Metall. Trans. A, 1986, vol. 17A, pp. 1139–48.

    Article  Google Scholar 

  15. The Physics of Welding, 2nd ed., J.F. Lancaster, ed., International Institute of Welding, Pergamon Press, Oxford, United Kingdom, 1986, p. 166.

    Google Scholar 

  16. The Physics of Welding, 2nd ed., J.F. Lancaster, ed., International Institute of Welding, Pergamon Press, Oxford, United Kingdom, 1986, pp. 140–41.

    Google Scholar 

  17. W.M. Rosenhow and J.P. Hartnett:Handbook of Heat Transfer, McGraw-Hill, New York, NY, 1973, pp. 8–126.

    Google Scholar 

  18. J.G. Marvin and G.S. Deiwert: NASA Tech. Rept. R-224, 1965.

  19. H.A. Dinulescu and E. Pfender:J. Appl. Phys., 1980, vol. 51, p. 3149.

    Article  Google Scholar 

  20. N.A. Sanders and E. Pfender:J. Phys., 1984, vol. 55, p. 714.

    Google Scholar 

  21. I.S. Gradshteyn and I.M. Ryzhik:Table of Integrals, Series, and Products, Academic Press, Orlando, FL, 1980, pp. 904–05.

    Book  Google Scholar 

  22. G.J. Dunn, C.D. Allemand, and T.W. Eagar:Metall. Trans. A, 1986, vol. 17A, pp. 1851–63.

    Article  Google Scholar 

  23. G.J. Dunn and T.W. Eagar:Metall. Trans. A, 1986, vol. 17A, pp. 1865–71.

    Article  Google Scholar 

  24. E. Pfender:Pure and Applied Chemistry, 1980, vol. 52, p. 1773.

    Article  Google Scholar 

  25. W.M. Pun and D.B. Spalding: Report No. HTS/76/2, Heat Transfer Section, Imperial College, London, 1977.

    Google Scholar 

  26. C.F. Liu: Ph.D. Thesis, University of Minnesota, Minneapolis, MN, 1977.

    Google Scholar 

  27. D.L. Evans and R.S. Tankin:Phys. Fluids, 1967, vol. 10, p. 1137.

    Article  Google Scholar 

  28. R.C. Westhoff: S.M. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1989.

    Google Scholar 

  29. O.H. Nestor:J. Appl. Phys., 1962, vol. 33, pp. 1638–48.

    Article  Google Scholar 

  30. M. Lu and S. Kou:Weld. J., 1988, vol. 67, pp. 29s-34s.

    Google Scholar 

  31. N.S. Tsai and T.W. Eagar:Metall. Trans. B, 1985, vol. 16B, pp. 841–46.

    Article  Google Scholar 

  32. H.G. Kraus:Weld. J., 1987, vol. 66, pp. 353s-359s.

    Google Scholar 

  33. N.S. Tsai: Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1983.

    Google Scholar 

  34. R.T.C. Choo and J. Szekely:Metall. Trans. B, 1992, vol. 23B, pp. 371–84.

    Article  Google Scholar 

  35. T.W. Eagar: Keynote Address,Recent Trends in Welding Science and Technology TWR '89, S.A. David and J.M. Vitek, eds., ASM INTERNATIONAL, Materials Park, OH, 1990, pp. 341–46.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choo, R.T.C., Szekely, J. & Westhoff, R.C. On the calculation of the free surface temperature of gas-tungsten-arc weld pools from first principles: Part I. modeling the welding arc. Metall Trans B 23, 357–369 (1992). https://doi.org/10.1007/BF02656291

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02656291

Keywords

Navigation