Skip to main content
Log in

The formation of oscillation marks in the continuous casting of steel slabs

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

The formation of oscillation marks on the surface of continuously cast slabs has been studied by metallographically examining slab samples and by performing a set of mathematical analyses of heat flow, lubrication, and meniscus shape in the meniscus region of the mold. The metallographic study has revealed that, in agreement with previous work, the oscillation marks can be classified principally according to the presence or absence of a small “hook” in the subsurface structure at the base of individual oscillation marks. The depth of the oscillation marks exhibiting subsurface hooks varies with the carbon content, reaching a maximum at about 0.1 pct carbon, while the oscillation marks without hooks show no carbon dependence. The analysis of heat flow at the meniscus, which is based on a measured mold heat-flux distribution, indicates that depending on the level of superheat, the meniscus may partially freeze within the period of a typical mold oscillation cycle. Lubrication theory has shown that, owing to the geometry of the mold flux channel between the solidifying shell at the meniscus and the straight mold wall, significant pressure gradients capable of deforming the meniscus can be generated in the flux by the reciprocating motion of the mold relative to the shell. A force balance on the interface between the steel and the mold flux has been applied to compute the shape of the meniscus as a function of the pressure developed in the lubricating flux at different stages in the mold oscillation cycle. This has demonstrated that the “contact” point between the meniscus and mold moves out of phase with (by π/2), and has a greater amplitude than, the mold displacement so that just at, or near, the end of the negative strip time molten steel can overflow at the meniscus. From these studies a reasonable mechanism of oscillation-mark formation emerges which involves interaction between the oscillating mold and the meniscusvia pressure gradients in the mold flux, meniscus solidification, and overflow. The mechanism is consistent with industrial observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a 2 :

capillary constant (−)

C pf , C ps :

specific heat of mold flux and steel, respectively(J/g °C)

f :

frequency of mold oscillation (cycle/s)

f s :

fraction solid [= (T liqT s)/(@#@ Tliq -T sol @#@)]

h(x) :

width of flux channel (cm)

h j , h f :

width of flux channel at inlet and outlet, respectively (cm)

h s− f :

heat transfer coefficient between steel and mold flux (W/cm2 °C)

l :

pitch of oscillation marks (cm)

l f :

length of flux channel (cm)

P(x) :

axial distribution of pressure in mold flux (dyne/cm2)

ΔP :

pressure difference (dyne/cm2)

Pi,Pf:

pressure at inlet and outlet of flux channel, respectively (dyne/cm2)

q (x) o :

heat-flux distribution along mold wall (W/cm2)

Q R :

relative consumption of mold flux (cm3/s)

R(x) :

integration of pressure in flux channel fromx = 0 tox = x (dyne/cm)

r :

distance normal to meniscus (cm)

S :

stroke of mold oscillation (cm)

s :

distance along meniscus (cm)

T f , T s :

temperature of flux and steel, respectively (°C)

T fi ,T si :

initial temperature of flux and steel, respectively (°C)

Tliq,T sol :

liquidus and solidus temperature, respectively (°C)

t N , t p :

negative and positive strip time, respectively (s)

u x :

relative velocity of mold flux (cm/s)

V f :

velocity of mold flux (cm/s)

v m :

velocity of mold (cm/s)

v s :

velocity of slab (cm/s)

x c :

contact point of meniscus with mold wall (cm)

λf, λs :

thermal conductivity of mold flux and steel, respectively (W/cm °C)

μf:

viscosity of mold flux (poise)

σ interfacial tension between mold flux and steel:

(dyne/cm) τ shear stress (dyne/cm2)

ϕ :

contact angle (radian)

References

  1. N.A. McPherson and R. E. Mercer:Ironmaking and Steelmaking, 1980, vol. 7, pp. 167–79.

    Google Scholar 

  2. T. Sakuraya, T. Emi, T. Imai, K. Emoto, and M. Kodama:Tetsu-to-Hagané, 1981, vol. 67, pp. 1220–28.

    CAS  Google Scholar 

  3. T. Nakano, M. Fuji, K. Nagano, S. Mizoguchi, T. Yamamoto, and K. Asano:Tetsu-to-Hagané, 1981, vol. 67, pp. 1210–19.

    Google Scholar 

  4. T. Okazaki, H. Tomono, K. Ozaki, and Y. Akabane:Tetsu-to-Hagané, 1982, vol. 68, p. S929.

    Google Scholar 

  5. H. Oka, Y. Eda, T. Koshikawa, H. Nakato, T. Nozaki, and Y. Habu:Tetsu-to-Hagané, 1983, vol. 69, p. S932.

    Google Scholar 

  6. H. Mizukami, M. Komatsu, T. Kitagawa, K. Kawakami, H. Uchibori, and M. Miyano:Tetsu-to-Hagané, 1983, vol. 69, p. S1032.

    Google Scholar 

  7. R. Alberny, A. Leclercq, D. Amaury, and M. Lahousse:Rev. Met., 1976, vol. 73, pp. 545–57.

    CAS  Google Scholar 

  8. P. V. Riboud and M. Larrecq: Proc. 62nd NOH-BOSC, ISS-AIME, 1979, pp. 78–92.

  9. T. Saeki, S. Ohguchi, S. Mizoguchi, T. Yamamoto, H. Misumi, and A. Tsuneoka:Tetsu-to-Hagané, 1982, vol. 68, pp. 1773–81.

    Google Scholar 

  10. I. V. Samarasekera and J. K. Brimacombe:Can. Met. Quart., 1979, vol. 18, pp. 251–66.

    CAS  Google Scholar 

  11. H. Tomono, H. Ackermann, W. Kurz, and W. Heinemann: inCasting of Small Sections, TMS-AIME, Warrendale, PA, 1982, pp. 55–73.

    Google Scholar 

  12. I. Saucedo, J. Beech, and G.J. Davie:Metal Tech., 1982 vol 9 pp. 282–91.

    Google Scholar 

  13. T. Kuwano, N. Shigematsu, F. Hoshi, and H. Ogiwara:Ironmaking and Steelmaking, 1983, vol. 10, pp. 75–81.

    CAS  Google Scholar 

  14. T. Emi, H. Nakato, Y. Iida, K. Emoto, R. Tachibana, T. Imai, and H. Bada:Proc. 61st NOH-BOSC, 1978, pp. 350–61.

  15. K. Kawakami, T. Kitagawa, H. Mizukami, H. Uchibori, S. Miyahara, M. Suzuki, and Y. Shiratani:Tetsu-to-Hagané, 1981, vol. 67, pp. 1190–99.

    Google Scholar 

  16. N.A. McPherson, A.W. Hardie, and G. Patrick:ISS Transactions, 1983, vol. 3, pp. 21–36.

    CAS  Google Scholar 

  17. H. Takeuchi, S. Matsumura, R. Hidaka, Y. Nagano, and Y. Suzuki:Tetsu-to-Hagané, 1983, vol. 69, pp. 248–53.

    Google Scholar 

  18. M. Hashio, T. Watanabe, T. Yamamoto, K. Marukawa, and M. Kawasaki:Tetsu-to-Hagané, 1982, vol. 68, p. S981.

    Google Scholar 

  19. R. Sato:Proc. 62nd NOH-BOSC, ISS-AIME, 1979, pp. 48–67.

  20. J. Savage and W. H. Pritchard:J. Iron Steel lnst., 1954, vol. 178, pp. 269–77.

    Google Scholar 

  21. T. Araki and Y. Sugitani:Tetsu-to-Hagané, 1973, vol. 59, pp. A17-A20.

    Google Scholar 

  22. R. Schoeffmann:Iron and Steel Engr., 1972, vol. 49, pp. 25–36.

    Google Scholar 

  23. , Saucedo, J. Beech, and G.J. Davies:Proc. 6th Intl. Vacuum Metallurgy Conf., 1979, pp. 885-904.

  24. H. Nakato and I. Muchi:Tetsu-to-Hagané. 1980, vol. 66, pp. 33–42.

    CAS  Google Scholar 

  25. R. Higbie:Trans. Am. Inst. Chem. Eng., 1935, vol. 31, pp. 365–89.

    CAS  Google Scholar 

  26. J. Szekely and N.J. Themelis:Rate Phenomena in Process Metallurgy, Wiley-Interscience, 1971, pp. 427-31.

  27. B. Camahan, H.A. Luther, and J. O. Wilkes:Applied Numerical Methods, Wiley, New York, NY, 1969, pp. 432–33.

    Google Scholar 

  28. K. Kawakami, T. Kitagawa, K. Murakami, Y. Miyashita, Y. Tsuchida, and K. Kawawa:Nippon Kokan Tech. Report, 1983, no. 93, pp. 149-63.

  29. T. Matsumiya, T. Saeki, J. Tanaka, and T. Ariyoshi:Tetsu-to-Hagané, 1982, vol. 68, pp. 1782–91.

    Google Scholar 

  30. M. D. Lanyi and C. J. Rosa: in Proc. of 2nd Process Technology Conf. on Continuous Casting of Steel, Chicago, IL, ISS-AIME, 1981, vol. 2, pp. 133-40.

  31. G. J. W. Kor: inProc.of 2nd Process Technology Conf. on Continuous Casting of Steel, Chicago, IL, ISS-AIME, 1981, vol. 2, pp. 124–32.

    Google Scholar 

  32. J. Harris:Rheology and Non-Newtonian Flow, Longmans, 1977, pp. 280–89.

  33. J. J. Bikerman:Physical Surfaces, Academic Press, 1970, p. 12.

  34. E. Matijevic:Surface and Colloid Science, Wiley-Interscience, 1969, vol. 1, p. 81.

  35. M. Wolf:Trans. ISIJ, 1980, vol. 20, pp. 710–17.

    Google Scholar 

  36. K. Sorimachi, H. Yamanaka, M. Kuga, H. Shikata, and M. Saigusa: inProc. of Modeling of Casting and Welding Processes, Engineering Foundation, New York, NY, 1983, pp. 195–98.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

E. TAKEUCHI, on study leave from Nippon Steel Corporation

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takeuchi, E., Brimacombe, J.K. The formation of oscillation marks in the continuous casting of steel slabs. Metall Trans B 15, 493–509 (1984). https://doi.org/10.1007/BF02657380

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02657380

Keywords

Navigation