Skip to main content
Log in

Conservation of mass and momentum for the flow of interdendritic liquid during solidification

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

In this paper, mass and momentum conservation equations are derived for the flow of interdendritic liquid during solidification using the volume-averaging approach. In this approach, the mushy zone is conceived to be two interpenetrating phases; each phase is described with the usual field quantities, which are continuous in that phase but discontinuous over the entire space. On the microscopic scale, the usual conservation equations along with the appropriate interfacial boundary conditions describe the state of the system. However, the solution to these equations in the microscopic scale is not practical because of the complex interfacial geometry in the mushy zone. Instead, the scale at which the system is described is altered by averaging the microscopic equations over some representative elementary volume within the mushy zone, resulting in macroscopic equations that can be used to solve practical problems. For a fraction of liquid equal to unity, the equations reduce to the usual conservation equations for a single-phase liquid. It is also found that the resistance offered by the solid to the flow of interdendritic liquid in the mushy zone is best described by two coefficients, namely, the inverse of permeability and a second-order resistance coefficient. For the flow in columnar dendritic structures, the second-order coefficient along with the permeability should be evaluated experimentally. For the flow in equiaxial dendritic structures(i.e., isotropic media), the inverse of permeability alone is sufficient to quantify the resistance offered by the solid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.C. Flemings:Solidification Processing, McGraw-Hill, New York, NY, 1974, pp. 244–46 and 83–85.

    Google Scholar 

  2. M.C. Flemings and G.E. Nereo:Trans. TMS-AIME, 1967, vol. 239, pp. 1449–61.

    CAS  Google Scholar 

  3. M.C. Flemings, R. Mehrabian, and G.E. Nereo:Trans. TMS-AIME, 1968, vol. 242, pp. 41–49.

    CAS  Google Scholar 

  4. M.C. Flemings and G.E. Nereo:Trans. TMS-AIME, 1968, vol. 242, pp. 50–55.

    CAS  Google Scholar 

  5. R. Mehrabian, M. Keane, and M.C. Flemings:Metall. Trans., 1970, vol. 1, pp. 1209–20.

    CAS  Google Scholar 

  6. S. Kou, D.R. Poirier, and M.C. Flemings:Electric Furnace Proc, ISS-AIME, Chicago, IL, 1977, vol. 35, pp. 221–28.

    Google Scholar 

  7. T. Fujii, D.R. Poirier, and M.C. Flemings:Metall. Trans. B, 1979, vol. 10B, pp. 331–39.

    Article  CAS  Google Scholar 

  8. S.D. Ridder, S. Kou, and R. Mehrabian:Metall. Trans. B, 1981, vol. 12B, pp. 435–47.

    Article  CAS  Google Scholar 

  9. J. Szekely and A.S. Jassal:Metall. Trans. B, 1978, vol. 9B, pp. 389–98.

    Article  CAS  Google Scholar 

  10. W.D. Bennon and F.P. Incropera:Int. J. Heat Mass Transfer, 1987, vol. 30, pp. 2161–70.

    Article  CAS  Google Scholar 

  11. M. Hassanizadeh and W.G. Gray:Adv. Water Resour., 1979, vol. 2, pp. 131–41.

    Article  Google Scholar 

  12. W.G. Gray:Chem. Eng. Sci., 1975, vol. 30, pp. 229–33.

    Article  CAS  Google Scholar 

  13. J.C. Slattery:AIChE J., 1967, vol. 13, pp. 1066–71.

    Article  Google Scholar 

  14. S. Whitaker:Chem. Eng. Sci., 1973, vol. 28, pp. 139–47.

    Article  CAS  Google Scholar 

  15. T.B. Anderson and R. Jackson:Ind. Eng. Chem. Fundam., 1967, vol. 6, pp. 527–39.

    Article  CAS  Google Scholar 

  16. D.A. Drew and L.A. Segel:Stud. Appl. Math., 1971, vol. 50, pp. 233–57.

    Google Scholar 

  17. G. Ahmadi and M. Farshad:Indian J. Technol., 1974, vol. 12, pp. 195–98.

    Google Scholar 

  18. J.A. Trapp:Int. J. Eng. Sci., 1976, vol. 14, pp. 991–98.

    Article  Google Scholar 

  19. S. Whitaker:Adv. Heat Transfer, 1977, vol. 13, pp. 119–203.

    CAS  Google Scholar 

  20. C. Beckermann: Ph.D. Thesis, Purdue University, West Lafayette, IN, 1987.

    Google Scholar 

  21. A. Bejan:Handbook of Single-phase Convective Heat Transfer, S. Kakae, R.K. Shah, and W. Aung, eds., John Wiley & Sons, New York, NY, 1987, pp. 16.1–16.34.

    Google Scholar 

  22. J.G. Georgiadis and I. Catton:Trans. ASME, 1986, vol. 108, pp. 284–90.

    Google Scholar 

  23. F. Chen and CF. Chen:J. Heat Transfer, 1988, vol. 110, pp. 403–09.

    Article  CAS  Google Scholar 

  24. V.R. Voller and C. Prakash:Int. J. Heat Mass Transfer, 1987, vol. 30, pp. 1709–19.

    Article  CAS  Google Scholar 

  25. C. Beckermann and R. Viskanta:Physico Chem. Hydrodyn., 1988, vol. 10, pp. 195–213.

    CAS  Google Scholar 

  26. S. Whitaker:Ind. Eng. Chem., 1969, vol. 61, pp. 14–28.

    Article  CAS  Google Scholar 

  27. W.G. Gray and P.C.Y. Lee:Int. J. Multiphase Flow, 1911, vol. 3, pp. 333–40.

    Article  Google Scholar 

  28. J.C. Slattery:AIChE J., 1969, vol. 15, pp. 866–72.

    Article  CAS  Google Scholar 

  29. S. Whitaker:AIChE J., 1967, vol. 13, pp. 420–27.

    Article  CAS  Google Scholar 

  30. G.K. Batchelor:An Introduction to Fluid Dynamics, Cambridge University Press, Cambridge, 1967, pp. 141–42.

    Google Scholar 

  31. R.J. McDonald and J.D. Hunt:Trans. TMS-AIME, 1969, vol. 245, pp. 1993–97.

    CAS  Google Scholar 

  32. R.B. Bird, W.E. Stewart, and E.N. Lightfoot:Transport Phe-nomena, John Wiley, New York, NY, 1960, pp. 59 and 150.

    Google Scholar 

  33. G.K. Batchelor:An Introduction to Fluid Dynamics, Cambridge University Press, Cambridge, MA, 1967, p. 147.

    Google Scholar 

  34. W.G. Gray and K. O’Neill:Water Resour. Res., 1976, vol. 12, pp. 148–54.

    Google Scholar 

  35. A.E. Scheidegger:The Physics of Flow Through Porous Media, Macmillan Company, New York, NY, 1960, pp. 76–79.

    Google Scholar 

  36. D.R. Poirier:Metall. Trans. B, 1987, vol. 18B, pp. 247–55.

    Google Scholar 

  37. R. Aris:Vectors, Tensors and the Basic Equations of Fluid Me-chanics, Prentice Hall, Englewood Cliffs, NJ, 1962, p. 31.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganesan, S., Poirier, D.R. Conservation of mass and momentum for the flow of interdendritic liquid during solidification. Metall Trans B 21, 173–181 (1990). https://doi.org/10.1007/BF02658128

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02658128

Keywords

Navigation