Skip to main content
Log in

The Deformation of aluminum foams

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The compressive flow behavior of Al, Al−7 pct Mg and 7075 Al alloy foams has been determined in structures whose void fraction varies from 0.80 to 0.95 of the total volume. In all cases, a greater than linear increase in flow strength with increase in density was exhibited, indicating that bending stresses within the foam structure are an important feature of the collapse mode. The flow strength did not follow proportionately changes in bulk flow strength in comparisons of either alloy or of heat-treatment conditions. Ancillary tensile and metallographic observations show that this lack of correlation arises because the different foams collapse by different modes with localized fracture becoming dominant in the higher strength 7075 alloy. The energy absorbing efficiency was found to be independent of foam density for all the materials. However, the efficiency was found to be a strong function of the alloy and heat treatment increasing from about 30 pct in Al, to 43 pct in Al−7 pct Mg and to 50 pct in the solution heat treated and aged 7075 alloy. The increase in efficiency occurs because of an increase in the propensity to fracture in the higher strength alloys which introduces the potential for a propagating constant-stress collapse process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. A. Kuhn and C. L. Downey:J. Eng. Materials and Technology, Trans. ASME, 1973, vol. 95, pp. 41–46.

    Google Scholar 

  2. W. Thiele:Metals Mater., 1972, vol. 6, no. 8, pp. 349–52.

    Google Scholar 

  3. E. A. Meinecke and R. C. Clark:Mechanical Properties of Polymeric Foams, Technomic, Westport, Conn., 1973.

    Google Scholar 

  4. K. C. Rusch:J. Appl. Polym. Sci, 1970, vol. 14, pp. 1433–47.

    Article  CAS  Google Scholar 

  5. K. C. Rusch:J. Appl. Polym. Sci., 1969, vol. 13, pp. 2297–2311.

    Article  CAS  Google Scholar 

  6. A. N. Gent and A. G. Thomas:J. Appl. Polym. Sci., 1959, vol. 1, pp. 107–13.

    Article  CAS  Google Scholar 

  7. J. M. Lederman:J. Appl. Polym. Sci., 1971, vol. 15, pp. 693–703.

    Article  CAS  Google Scholar 

  8. V. A. Matonis:SPE J., 1964, vol. 20, pp. 1024–30.

    Google Scholar 

  9. R. Chan and M. Nakamura:J. Cell Plast., 1969, vol. 5, no. 2, pp. 112–18.

    Article  Google Scholar 

  10. M. R. Patel and I. Finnie:J. Mater., 1970, vol. 5, no. 4, pp. 909–32.

    CAS  Google Scholar 

  11. M. C. Shaw and T. Sata:Int. J. Mech Sct., 1968, vol. 8, pp. 469–78.

    Article  Google Scholar 

  12. G. F. Bolling and R. H. Richman:Phil. Mag., 1969, vol. 19, pp. 247–64.

    Article  ADS  CAS  Google Scholar 

  13. W. L. Fink and D. W. Smith:Trans. AIME, 1937, vol. 126, pp. 162–67.

    Google Scholar 

  14. R. E. Stotchdopole and L. C. Rubens:J. Cell. Plast., 1965, vol. 1, pp. 91–96.

    Article  Google Scholar 

  15. C. E. Massonnet and M. A. Save:Plastic Analysis and Design, vol. 1, Blaisdell, New York, 1965.

    Google Scholar 

  16. S. P. Timoshenko and J. M. Gere:Theory of Elastic Stability, McGraw Hill, New York, 1961.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thornton, P.H., Magee, C.L. The Deformation of aluminum foams. Metall Trans A 6, 1253–1263 (1975). https://doi.org/10.1007/BF02658535

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02658535

Keywords

Navigation