Skip to main content
Log in

The thermal stability of the fibrous copper-chromium eutectic

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The elevated temperature stability of the fibrous copper-chromium eutectic was studied and found to depend strongly upon the extent of structural defects in the as-grown eutectic. Both highly branched and nearly “ideal,” or regular, fibrous structures were obtained by controlling the crystal growing conditions. The branched structure coarsens at a much faster rate than the regular structure. In the regular structure, the initial stage of coarsening is described by a simple two-dimensional Ostwald ripening mechanism modified to take into account the effects of fiber geometry and volume fraction. The coarsening rate is limited by volume diffusion of the chromium solute in the copper matrix. The activation energy for coarsening is approximately 298 kJ/mol. After long time annealing, the chromium-rich fibers begin to pinch off and three dimensional coarsening is initiated which leads to a rapid increase in the coarsening rate. Application of theoretical analyses to the observed coarsening rate yields the product as 1.3 × 10−13 J/s at 1000°C, whereD is the diffusivity of Cr in solid Cu and Σ the Cu-Cr interfacial energy. Using reported values ofD, Σ is bracketed between 0.27 and 2.5 J/m2. The latter is quite high for a solid-solid interfacial energy, but is consistent with the rapid coarsening observed in this system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. E. Cline:Acta Met., 1971, vol. 19, p. 481.

    Article  CAS  Google Scholar 

  2. H. B. Smartt and T. H. Courtney:Met. Trans., 1973, vol. 4, p. 222.

    Article  Google Scholar 

  3. Y. G. Nakagawa and G. C. Weatherly:Acta Met., 1972, vol. 20, p. 345.

    Article  CAS  Google Scholar 

  4. L. Y. Lin and T. H. Courtney:Met. Trans., 1974, vol. 5, p. 513.

    Article  CAS  Google Scholar 

  5. R. Kossowsky and W. C. Johnston:Trans. TMS-AIME, 1969, vol. 245, p. 1826.

    CAS  Google Scholar 

  6. M. Salkind, F. George, and W. Tice:Trans. TMS-AIME, 1969, vol. 245, p. 2339.

    CAS  Google Scholar 

  7. L. D. Graham and R. W. Kraft:Trans. TMS-AIME, 1966, vol. 236, p. 94.

    CAS  Google Scholar 

  8. Y. G. Nakagawa and G. C. Weatherly:Met. Trans., 1972, vol. 3, p. 3223.

    Article  CAS  Google Scholar 

  9. G. Garmong and C. G. Rhodes:Met. Trans., 1974, vol. 5, p. 2507.

    Article  CAS  Google Scholar 

  10. A. R. T. deSilva and G. A. Chadwick:Metal. Sci. J., 1972, vol. 6, p. 157.

    Article  CAS  Google Scholar 

  11. F. D. Lemkey and R. W. Kraft:Rev. Sci. Inst., 1962, vol. 33, p. 846.

    Article  Google Scholar 

  12. R. W. Hertzberg and R. W. Kraft:Trans. TMS-AIME, 1963, vol. 227, p. 530.

    Google Scholar 

  13. H. B. Smartt and T. H. Courtney:Met. Trans., 1972, vol. 3, p. 2000.

    Article  CAS  Google Scholar 

  14. H. E. Cline, J. L. Walter, E. Lifshin, and R. R. Russell:Met. Trans., 1971, vol. 2, p. 189.

    Article  CAS  Google Scholar 

  15. G. A. Chadwick:J. Inst. Metals, 1963, vol. 91, p. 169.

    CAS  Google Scholar 

  16. M. J. Salkind, F. D. Lemkey, and F. D. George:Whisker Technology, A. P. Levitt, ed., p. 343, J. Wiley Interscience, New York, N. Y., 1970.

    Google Scholar 

  17. S. Marich:Met. Trans., 1970, vol. 1, p. 2953.

    Article  CAS  Google Scholar 

  18. C. Wagner:Z. Elektrochem., 1961, vol. 65, p. 581.

    CAS  Google Scholar 

  19. I. M. Lifshitz and V. V. Slyozov:J. Phys. Chem. Solids, 1961, vol. 19, p. 35.

    Article  Google Scholar 

  20. G. E. Greenwood:Acta Met., 1956, vol. 4, p. 243.

    Article  CAS  Google Scholar 

  21. G. R. Speich and R. A. Oriani:Trans. TMS-AIME, 1965, vol. 232, p. 623.

    Google Scholar 

  22. A. J. Ardell:Met. Trans., 1972, vol. 3, p. 1395.

    Article  CAS  Google Scholar 

  23. H. B. Smartt, L. K. Tu, and T. H. Courtney:Met. Trans., 1971, vol. 2, p. 2717.

    Article  CAS  Google Scholar 

  24. H. B. Smartt and T. H. Courtney:Met. Trans. A, 1976, vol. 7A, p. 123.

    Article  CAS  Google Scholar 

  25. R. P. Elliott:Constitution of Binary Alloys, First Supplement, p. 344, McGraw Hill Book Co., New York, N. Y., 1965.

    Google Scholar 

  26. G. Barreau, G. Brunei, and G. Cizeron:Compt. Rendu. Sci., Ser. C, 1971, vol. 272, p. 618.

    CAS  Google Scholar 

  27. C. Zener:Trans. AIME, 1946, vol. 167, p. 550.

    Google Scholar 

  28. W. A. Tiller:Liquid Metals and Solidification, A. S. M., Cleveland, Ohio, 1958.

    Google Scholar 

  29. G. A. Chadwick:Progr. Mater. Sci., vol. 12, p. 97, Pergamon Press, New York, N. Y., 1958.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, L.Y., Courtney, T.H., Stark, J.P. et al. The thermal stability of the fibrous copper-chromium eutectic. Metall Trans A 7, 1435–1441 (1976). https://doi.org/10.1007/BF02658830

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02658830

Keywords

Navigation