Skip to main content
Log in

A general mechanism of martensitic nucleation: Part I. General concepts and the FCC → HCP transformation

  • Transformations
  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Consideration of the martensitic nucleation process as a sequence of steps which take the particle from maximum to minimum coherency leads to the hypothesis that the first step in martensitic nucleation is faulting on planes of closest packing. It is further postulated that the faulting displacements are derived from an existing defect, while matrix constraints cause all subsequent processes to occur in such a way as to leave the fault plane unrotated, thus accounting for the observed general orientation relations. Using basic concepts of classical nucleation theory, the stacking fault energy is shown to consist of both volume energy and surface energy contributions. When the volume energy contribution is negative, the fault energy decreases with increasing fault thickness such that the fault energy associated with the simultaneous dissociation of an appropriate group of dislocations (e.g. a finite tilt boundary segment) can be zero or negative. This condition leads to the spontaneous formation of a martensitic embryo. For the specific case of the fcc → hcp martensitic transformation in Fe-Cr-Ni alloys, the defect necessary to account for spontaneous embryo formation at the observedM s temperatures may consist of four or five properly spaced lattice dislocations. Such defects are considered to be consistent with the known sparseness of initial martensitic nucleation sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Kaufman and M. Cohen:Progr. Metal Phys., 1958, vol. 7, p. 165.

    Article  CAS  ADS  Google Scholar 

  2. V. Raghavan and M. Cohen:Acta Met., 1972, vol. 20, p. 333.

    Article  CAS  Google Scholar 

  3. C. L. Magee:Phase Transformations, p. 115, ASM, 1970.

  4. R. E. Cech and D. Turnbull:Trans. AIME, 1956, vol. 206, p. 124.

    Google Scholar 

  5. G. B. Olson and M. Cohen:Met. Trans. A, vol. 7A, 1976, pp. 1905–14.

    CAS  Google Scholar 

  6. G. B. Olson and M. Cohen:Met. Trans. A, vol. 7A, 1976, pp. 1915–23.

    CAS  Google Scholar 

  7. M. S. Wechsler, D. S. Lieberman, and T. A. Read:Trans. AIME, 1953, vol. 197, p. 1503.

    Google Scholar 

  8. J. S. Bowles and J. K. Mackenzie:Acta Met., 1954, vol. 2, p. 129.

    Article  CAS  Google Scholar 

  9. R. W. Guard and M. E. Fine:Trans. TMS-AIME, 1965, vol. 233, p. 1383.

    CAS  Google Scholar 

  10. J. P. Hirth:Met. Trans., 1970, vol. 1, p. 2367.

    Article  Google Scholar 

  11. R. de Wit and R. E. Howard:Acta Met., 1965, vol. 13, p. 655.

    Article  Google Scholar 

  12. A. P. Miodownik: Unpublished research, University of Surrey, England, 1974.

  13. J. W. Gibbs:The Scientific Papers of J. Willard Gibbs, Dover, 1961.

  14. J. D. Eshelby:Roy. Soc. London Proc., 1957, vol. A241, p. 376.

    Article  MathSciNet  ADS  Google Scholar 

  15. F. Lecroisey and A. Pineau:Met. Trans., 1972, vol. 3, p. 387.

    Article  CAS  Google Scholar 

  16. F. Lecroisey: Doctoral Thesis, University of Nancy, France, 1971.

    Google Scholar 

  17. J. F. Breedis and L. Kaufman:Met. Trans., 1971, vol. 2, p. 2359.

    Article  CAS  Google Scholar 

  18. G. B. Olson: Sc.D. Thesis, Massachusetts Institute of Technology, June 1974.

  19. A. Pineau: Unpublished research, Ecole des Mines, Paris, France, 1974.

  20. T. Ericsson:Acta Met., 1966, vol. 14, p. 853.

    Article  CAS  Google Scholar 

  21. J. P. Hirth and J. Lothe:Theory of Dislocations, McGraw-Hill, 1968.

  22. J. W. Christian:The Mechanism of Phase Transformations in Crystalline Solids, p. 129, Institute of Metals Monograph No. 33, 1969.

  23. J. A. Venables:Phil. Mag., 1962, vol. 7, p. 35.

    Article  ADS  Google Scholar 

  24. E. Votava:Acta Met., 1960, vol. 8, p. 901.

    Article  Google Scholar 

  25. M. Umemoto and W. S. Owen:Met. Trans., 1974, vol. 5, p. 2041.

    Article  CAS  Google Scholar 

  26. A. S. Sastri and D. R. F. West:J. Iron Steel Inst., 1965, vol. 203, p. 138.

    CAS  Google Scholar 

  27. A. E. H. Love:The Mathematical Theory of Elasticity, Cambridge University Press, 1927.

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is Part I of a three-part series based on a thesis submitted by G. B. Olson for the degree of Sc.D. in Metallurgy at the Massachusetts Institute of Technology in June 1974.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olson, G.B., Cohen, M. A general mechanism of martensitic nucleation: Part I. General concepts and the FCC → HCP transformation. Metall Trans A 7, 1897–1904 (1976). https://doi.org/10.1007/BF02659822

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02659822

Keywords

Navigation