Skip to main content
Log in

The effect of intercritical annealing temperature on the structure of niobium microalloyed dualphase steel

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The structures produced in a Nb-microalloyed steel by oil quenching after intercritical anneals at 760 and 810 °C have been examined by light and transmission electron microscopy. After both anneals, the periphery of the austenite pool transforms on cooling to ferrite in the same orientation as the ferrite retained during intercritical annealing. Thus the ferrite forms by an epitaxial growth mechanism without the formation of a new interface or grain boundary. The new ferrite is precipitate-free in contrast to the retained ferrite which develops a very dense precipitate dispersion during intercritical annealing. In the carbonenriched interior of the austenite pool beyond the epitaxial ferrite only martensite forms in specimens annealed at 760 °C but various mixtures of ferrite and cementite form in specimens annealed at 810 °C. The latter structures include lamellar pearlite, a degenerate pearlite, and cementite interphase precipitation. All Nb is in solution in the austenite formed at 810 °C, and therefore the low hardenability of the specimens annealed at that temperature is best explained by the effect of low austenite carbon content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. David K. Matlock, George Krauss, Luis F. Ramos, and Glenn S. Huppi:Structure and Properties of Dual-Phase Steels, R. A. Kot and J. W. Morris, eds., pp. 62–90, TMS-AIME, Warrendale, PA, 1979.

    Google Scholar 

  2. M. S. Rashid: Automotive Engineering Congress, Rep. No. 760206, Detroit, Soc. Auto. Engineers, 1976.

  3. R. G. Davies:Met. Trans. A, 1978, vol. 9A, pp. 41–52.

    Article  CAS  Google Scholar 

  4. A. P. Coldren, G. Tither, A. Cronford, and J. R. Hiam:Formable HSLA and Dual-Phase Steels, A. T. Davenport, ed., pp. 205–26, TMS-AIME, Warrendale, PA, 1979.

    Google Scholar 

  5. P. R. Mould and C. C. Skena:Formable HSLA and Dual-Phase Steels, A. T. Davenport, ed., pp. 181–204, TMS-AIME, Warrendale, PA, 1979.

    Google Scholar 

  6. Richard D. Lawson, David K. Matlock, and George Krauss:Metallography, 1980, vol. 13, pp. 71–87.

    Article  CAS  Google Scholar 

  7. I. H. Khan:Handbook of Thin Film Technology, L. I. Maissel and R. Glang, eds., pp. 10–13, McGraw-Hill, Inc., New York, 1970.

    Google Scholar 

  8. M. A. Grossman and E. C. Bain:Principals of Heat Treatment, 5th ed., ASM, Metals Park, OH, 1964.

    Google Scholar 

  9. C. A. Siebert, D. V. Doane, and D. H. Breen:The Hardenability of Steels, ASM, Metals Park, OH, 1977.

    Google Scholar 

  10. G. T. Eldis and W. C. Hagel:Hardenability Concepts with Applications to Steel, D. V. Doane and J. S. Kirkaldy, eds., pp. 397–413, AIME, Warrendale, PA, 1978.

    Google Scholar 

  11. A. T. Davenport, L. C. Brossard, and R. E. Miner:J. Met., June 1975, vol. 27, pp. 21–7.

    Google Scholar 

  12. P. L. Mangonon, Jr. and W. E. Heitmann:Microalloying ’75, pp. 59–74, Union Carbide Corporation, New York, 1977.

    Google Scholar 

  13. T. M. Hagendoorn and M. J. Spanraft:Microalloying ’75, pp. 75–85, Union Carbide Corporation, New York, 1977.

    Google Scholar 

  14. J. M. Gray:Processing and Properties of Low-Carbon Steel, J. M. Gray, ed., pp. 225–42, AIME, Warrendale, PA, 1973.

    Google Scholar 

  15. M. Cohen and S. S. Hansen: ASTM STP 672, pp. 34–52, American Society for Testing and Materials, Philadelphia, PA, 1979.

  16. R. W. K. Honeycombe:Met. Trans. A, 1976, vol. 7A, pp. 915–36.

    Article  CAS  Google Scholar 

  17. L. Meyer, F. Heisterkamp, and W. Mueshenborn:Microalloying ’75, pp. 153–67, Union Carbide Corporation, New York, 1977.

    Google Scholar 

  18. E. L. Brown, A. J. DeArdo, and J. H. Bucher:The Hot Deformation of Austenite, pp. 250–85, AIME, 1977.

  19. T. Sakai, M. Shiozaki, and K. Takashina:J. Appl. Phys., 1979, vol. 50, pp. 2369–71.

    Article  CAS  Google Scholar 

  20. N. C. Law and D. V. Edmonds:Met. Trans. A, 1980, vol. 11 A, pp. 33–6.

    Google Scholar 

  21. A. T. Davenport and P. C. Becker:Met. Trans., 1971, vol. 2, pp. 2962–64.

    CAS  Google Scholar 

  22. J. M. Gray and R. B. G. Yeo:ASM Trans. Q., 1968, vol. 61, pp. 255–69.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geib, M.D., Matlock, D.K. & Krauss, G. The effect of intercritical annealing temperature on the structure of niobium microalloyed dualphase steel. Metall Trans A 11, 1683–1689 (1980). https://doi.org/10.1007/BF02660523

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02660523

Keywords

Navigation