Skip to main content
Log in

The morphology, crystallography, and mechanism of carbide precipitation in an Fe-0.12 Pct C-3.28 Pct Ni alloy

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Carbide precipitation during the eutectoid decomposition of austenite has been studied in an Fe-0.12 pct C-3.28 pct Ni alloy by transmission electron microscopy (TEM) supplemented by optical microscopy. Nodular bainite which forms during the latter stages of austenite decomposition at 550 °C exhibits two types of carbide arrangement: (a) banded interphase boundary carbides with particle diameters of about 20 to 90 nm and mean band spacings between 180 and 390 nm and (b) more randomly distributed (“nonbanded”) elongated particles exhibiting a wide range of lengths between 33 and 2500 nm, thicknesses of approximately 11 to 50 nm, and mean intercarbide spacings of approximately 140 to 275 nm. Electron diffraction analysis indicated that in both cases, the carbides are cementite, obeying the Pitsch orientation relationship with respect to the bainitic ferrite. The intercarbide spacings of both morphologies are significantly larger than those previously reported for similar microstructures in steels containing alloy carbides other than cementite (e.g., VC, TiC). Both curved and straight cementite bands were observed; in the latter case, the average plane of the interphase boundary precipitate sheets was near {110}α//{011}c consistent with cementite precipitation on low-energy {110}α//{111}γ ledge terrace planes (where α,β, andc refer to ferrite, austenite, and cementite, respectively). The results also suggest that the first stage in the formation of the nonbanded form of nodular bainite is often the precipitation of cementite rods, or laths, in austenite at the α:γ interfaces of proeutectoid ferrite secondary sideplates formed earlier. Although these cementite rods frequently resemble the “fibrous” microstructures observed by previous investigators in carbide-forming alloy steels, they are typically much shorter than fibrous alloy carbides. The bainitic microstructures observed here are analyzed in terms of a previously developed model centered about the roles of the relative nucleation and growth rates of the product phases in controlling the evolution of eutectoid microstructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Mannerkoski:Acta Polytech. Scand., 1964, ch. 26.

  2. K. Relander:Acta Polytech. Scand., 1964, ch. 34.

  3. A.T. Davenport, F.G. Berry, and R.W.K. Honeycombe:Met. Sci., 1968, vol. 2, p. 104.

    CAS  Google Scholar 

  4. F.G. Berry, A.T. Davenport, and R.W.K. Honeycombe:The Mechanism of Phase Transformations in Crystalline Solids, Institute of Metals, London, Monograph 33, 1969, pp. 228–92.

    Google Scholar 

  5. F.G. Berry and R.W.K. Honeycombe:Metall. Trans., 1970, vol. 1, pp. 3279–86.

    CAS  Google Scholar 

  6. A.T. Davenport and R.W.K. Honeycombe:Proc. R. Soc. A, 1971, vol. 322, pp. 191–205.

    Article  CAS  Google Scholar 

  7. R.K.W. Honeycombe:Metall. Trans. A, 1976, vol. 7A, pp. 915–36.

    CAS  Google Scholar 

  8. R.K.W. Honeycombe:Phase Transformations in Ferrous Alloys, TMS-AIME, Warrendale, PA, 1984, pp. 259-80.

    Google Scholar 

  9. J. McCann and J.A. Ridai:J. Iron Steel Inst., 1964, vol. 202, pp. 441–47.

    CAS  Google Scholar 

  10. K. Campbell and R.W.K. Honeycombe:Met. Sci., 1974, vol. 8, pp. 197–203.

    Article  CAS  Google Scholar 

  11. R.G. Baker and J. Nutting:J. Iron Steel Inst., 1959, vol. 192, pp. 257–68.

    CAS  Google Scholar 

  12. A.D. Batte and R.W.K. Honeycombe:J. Iron Steel Inst., 1973, vol. 211, pp. 284–89.

    CAS  Google Scholar 

  13. D.V. Edmonds and R.W.K. Honeycombe:Met. Sci., 1978, vol. 12, pp. 399–405.

    Article  CAS  Google Scholar 

  14. Y. Ohmori, A.T. Davenport, and R.W.K. Honeycombe:Trans. Iron Steel Inst. Jpn., 1972, vol. 12, pp. 129–37.

    Google Scholar 

  15. N.K. Balliger: Ph.D. Dissertation, University of Cambridge, Cambridge, United Kingdom, 1977.

    Google Scholar 

  16. A.T. Davenport and P.C. Becker:Metall. Trans., 1971, vol. 2, pp. 2962–64.

    CAS  Google Scholar 

  17. G.J. Shiflet, H.I. Aaronson, and J.R. Bradley:Metall. Trans. A, 1981, vol. 12A, pp. 1743–50.

    Google Scholar 

  18. W.T. Reynolds, Jr., F.Z. Li, S.K. Liu, S. Hartfield, and H.I. Aaronson:Metall. Trans. A, 1990, vol. 21A, pp. 1479–91.

    CAS  Google Scholar 

  19. H.I. Aaronson: inThe Decomposition of Austenite by Diffusional Processes, V.F. Zackay and H.I. Aaronson, eds., Interscience, New York, NY, 1962, pp. 387–546.

    Google Scholar 

  20. H.J. Lee, G. Spanos, G.J. Shiflet, and H.I. Aaronson:Acta Metall., 1988, vol. 36, pp. 1129–40.

    Article  CAS  Google Scholar 

  21. G. Spanos, H.S. Fang, D.S. Sarma, and H.I. Aaronson:Metall. Trans. A, 1990, vol. 21A, pp. 1391–1411.

    CAS  Google Scholar 

  22. W.T. Reynolds, Jr., F.Z. Li, C.K. Shui, G.J. Shiflet, and H.I. Aaronson: inPhase Transformations ’87, G.W. Lorimer, ed., Institute of Metals, London, 1988, pp. 330–33.

    Google Scholar 

  23. H.I. Aaronson:The Mechanism of Phase Transformations in Crystalline Solids, Institute of Metals, London, Monograph 33, 1969, pp. 270–81.

    Google Scholar 

  24. H.I. Aaronson and H.J. Lee:Scripta Metall., 1987, vol. 21, pp. 1011–16.

    Article  CAS  Google Scholar 

  25. H.J. Lee, G. Spanos, G.J. Shiflet, and H.I. Aaronson:Acta Metall., 1988, vol. 36, pp. 1129–40.

    Article  CAS  Google Scholar 

  26. H.I. Aaronson, W.T. Reynolds, Jr., G.J. Shiflet, and G. Spanos:Metall. Trans. A, 1990, vol. 21A, pp. 1343–80.

    CAS  Google Scholar 

  27. M. Hillert: inThe Decomposition of Austenite by Diffusional Processes, V.F. Zackay and H.I. Aaronson, eds., Interscience, New York, NY, 1962, pp. 197–237.

    Google Scholar 

  28. W. Pitsch:Acta Metall., 1962, vol. 10, pp. 79–80.

    Article  Google Scholar 

  29. P.D. Southwick: Ph.D. Dissertation, University of Cambridge, Cambridge, United Kingdom, 1978.

    Google Scholar 

  30. J.M. Rigsbee and H.I. Aaronson:Acta Metall., 1979, vol. 27, pp. 365–76.

    Article  CAS  Google Scholar 

  31. J.M. Rigsbee and H.I. Aaronson:Acta Metall., 1979, vol. 27, pp. 351–63.

    Article  CAS  Google Scholar 

  32. T. Furuhara and H.I. Aaronson:Scripta Metall., 1988, vol. 22, pp. 1635–37.

    Article  CAS  Google Scholar 

  33. R.A. Ricks and P.R. Howell:Acta Metall., 1983, vol. 31, pp. 853–61.

    Article  CAS  Google Scholar 

  34. H.I. Aaronson, G. Spanos, E.S.K. Menon, M.G. Hall, W.F. Lange III, and K. Chattopadhyay: inStructure and Energy of Interphase Boundaries, K.N. Subramanian and M.I. Imam, eds., TMS-AIME, Warrendale, PA, 1986, pp. 3–20.

    Google Scholar 

  35. P.D. Southwick and R.W.K. Honeycombe:Met. Sci., 1980, vol. 14, pp. 253–61.

    Article  CAS  Google Scholar 

  36. T. Obara, G.J. Shiflet, and H.I. Aaronson:Metall. Trans. A, 1983, vol. 14A, pp. 1159–67.

    Google Scholar 

  37. H.J. Lee and H.I. Aaronson:J. Mater. Sci., 1988, vol. 23, pp. 150–60.

    Article  CAS  Google Scholar 

  38. B. Uhrenius: inHardenability Concepts with Applications to Steel, D.V. Doane and J.S. Kirkaldy, eds., TMS-AIME, Warrendale, PA, 1978, pp. 28–81.

    Google Scholar 

  39. K.C. Russell: inPhase Transformations, H.I. Aaronson, ed., ASM, Metals Park, OH, 1970, pp. 219–312.

    Google Scholar 

  40. W.F. Lange, III, M. Enomoto, and H.I. Aaronson:Metall. Trans. A, 1988, vol. 19A, pp. 427–40.

    CAS  Google Scholar 

  41. H.I. Aaronson, T. Furuhara, J.M. Rigsbee, W.T. Reynolds, Jr., and J.M. Howe:Metall. Trans. A, 1990, vol. 21A, pp. 2369–2409.

    CAS  Google Scholar 

  42. H.I. Aaronson:Metall. Trans. A, in press.

  43. G. Spanos, W.T. Reynolds, Jr., and R.A. Vandermeer:Metall. Trans. A, 1990, vol. 21A, pp. 1367–80.

    Google Scholar 

  44. P.G. Shewmon:Diffusion in Solids, McGraw-Hill, New York, NY, 1963.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spanos, G. The morphology, crystallography, and mechanism of carbide precipitation in an Fe-0.12 Pct C-3.28 Pct Ni alloy. Metall Trans A 23, 171–181 (1992). https://doi.org/10.1007/BF02660863

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02660863

Keywords

Navigation