Skip to main content
Log in

Heat and metal transfer in gas metal arc welding using argon and helium

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

This article describes a theoretical investigation on the arc parameters and metal transfer in gas metal arc welding (GMAW) of mild steel using argon and helium shielding gases. Major differences in the predicted arc parameters were determined to be due to large differences in thermophysical properties. Various findings from the study include that an arc cannot be struck in a pure helium atmosphere without the assistance of metal vapor, that a strong electromagnetic cathode force affects the fluid flow and heat transfer in the helium arc, providing a possible explanation for the experimentally observed globular transfer mode and that the tapering of the electrode in an argon arc is caused by electron condensation on the side of the electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

:

self-induced azimuthal magnetic field (Wb/m2)

C p :

specific heat at constant pressure (J/kg K)

e :

elementary charge (As)

F r :

radial Lorentz force (N/m3)

F z :

axial Lorentz force (N/m3)

h :

plasma enthalpy (J/kg)

h a :

anode enthalpy (J/kg)

h c,i :

enthalpy within the cathode spot region (J/kg)

h c,o :

enthalpy outside the cathode spot region (J/kg)

h i :

enthalpy of gas flowing into the system (J/kg)

I :

welding current (A)

J :

current density (A/m2)

J c :

cathode current density (A/m2)

J r :

radial current density (A/m2)

J z :

axial current density (A/m2)

k :

thermal conductivity (W/m K)

kg :

Boltzmann’s constant (J/K)

k g :

thermal conductivity in the anode fall region(W/m K)

tP:

pressure (Pa)

kQ a :

heat lost by the gas in the anode fall region (W/m2)

Q c :

heat gained by the gas in the cathode fall region (W/m )

r :

radial distance (m)

R c :

cathode spot (weld pool) radius (m)

S R :

radiation loss term (W/m3)

T :

temperature (K)

T a,g :

temperature in the gas at a distanced from the anode (K)

T an :

anode temperature (K)

T av :

average temperature of gas in the anode fall region (K)

T c,e :

decrease in electron temperature at the cathode (K)

T c,g :

temperature in the gas at a distance 0.1 mm from the cathode (K)

Tcat :

cathode temperature (K)

u :

radial velocity (m/s)

V c :

cathode fall voltage (V)

w :

axial velocity (m/s)

z:

axial distance (m)

δ:

thickness of anode fall region (m)

μ:

molecular dynamic viscosity (Kg/ms)

0 :

magnetic permeability of free space (H/m)

ρ:

density (kg/m3)

δe :

electrical conductivity (1/Wm)

Φ:

electric potential (V)

Φmax :

maximum value of the electric potential (V)

References

  1. Welding Handbook, L.P. Kearns, ed., American Welding Society, Miami, FL, 1978, vol. II. pp. 131–27.

  2. The Physics of Welding, J.F. Lancaster, ed., Pergamon Press, Oxford, United Kingdom, 1986, p. 15.

  3. V.R. Dillenbeck and L. Castagno:3rd Int. Conf. on Welding and Performance of Pipelines, The Welding Institute, London, 1986, pp. 221–32.

    Google Scholar 

  4. J. Norrish:Advanced Welding Processes, Institute of Physics Publishing, Bristol, United Kingdom, 1992, p. 83.

    Google Scholar 

  5. P.G. Jönsson, R.C. Westhoff, and J. Szekely:J. Appl. Phys., 1993, vol. 74, pp. 5997–6006.

    Article  Google Scholar 

  6. E.A. Smårs and K. Acinger: Report No. 212-162-68, International Institute of Welding, Abington, United Kingdom, 1968.

  7. K.C. Hsu, K. Etemadi, and E. Pfender:J. Appl. Phys., 1983, vol. 54, pp. 1293–301.

    Article  CAS  Google Scholar 

  8. K.C. Hsu and E. Pfender:J. Appl. Phys., 1983, vol. 54, pp. 4359–66.

    Article  CAS  Google Scholar 

  9. J. McKelliget and J. Szekely:Metall. Trans. A, 1986, vol. 17A, pp. 1139–48.

    CAS  Google Scholar 

  10. T. Zacharia, A.H. Eraslan, and D.K. Aidun:Weld. J., 1988, vol. 68, pp. 18s-27s.

    Google Scholar 

  11. K.C. Tsao and C.S. Wu:Weld. J., 1988, vol. 68, pp. 70s-75s.

    Google Scholar 

  12. K.C. Hsu and E. Pfender:J. Appl. Phys., 1983, vol. 54, pp. 3818–24.

    Article  CAS  Google Scholar 

  13. P.G. Jönsson: Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1993.

    Google Scholar 

  14. The Physics of Welding, J.F. Lancaster, ed., Pergamon Press, Oxford, United Kingdom, 1986, pp. 120–27.

  15. W. Finkelnburg and S.M. Segal:Phys. Rev., 1951, vol. 83, pp. 582–85.

    Article  Google Scholar 

  16. C.F. Liu: Ph.D. Thesis, University of Minnesota, Minneapolis, MN, 1977.

    Google Scholar 

  17. R.S. Devoto:Phys. Fluids, 1973, vol. 16, pp. 616–23.

    Article  CAS  Google Scholar 

  18. D.L. Evans and R.S. Tankin:Phys. Fluids, 1967, vol. 10, pp. 1137–44.

    Article  Google Scholar 

  19. W.J. Lick and H.W. Emmons:Thermodynamic Properties of Helium to 50000 K, Harvard University Press, Cambridge, MA, 1962, pp. 35–37.

    Google Scholar 

  20. W.J. Lick and H.W. Emmons:Transport Properties of Helium from 200 to 50000 K,Harvard University Press, Cambridge, MA, 1962, pp. 87–89.

    Google Scholar 

  21. G.J. Dunn and T.W. Eagar:Metall. Trans. A, 1986, vol. 17A, pp. 1865–71.

    CAS  Google Scholar 

  22. H.W. Emmons:Phys. Fluids, 1967, vol. 10, pp. 1125–36.

    Article  CAS  Google Scholar 

  23. H.W. Emmons: inModern Developments in Heat Transfer, W. Ibele, ed., Academic Press, New York, NY, 1963, pp. 413–25.

    Google Scholar 

  24. Welding Handbook, C. Weisman, ed., American Welding Society, Miami, FL, 1976, vol. 1.

  25. G.J. Dunn: M.A. and B.A. Thesis, Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 1984.

    Google Scholar 

  26. T.W. Eagar:Recent Trends in Welding Research, S.A. David and J.M. Vitek, eds., ASM, Materials Park, OH, 1990, pp. 1–6.

    Google Scholar 

  27. P. Fauchais, M. Boulos, and E. Pfender:Plasma Technology in Metallurgical Processing, Iron and Steel Institute, Warrendale, PA, pp. 11–26.

  28. W.M. Pun and D.B. Spalding: Report No. HTS/76/2, Imperial College, London, 1976.

  29. Y.-S. Kim: Ph.D. Thesis, Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 1989.

    Google Scholar 

  30. Y.-S. Kim, D.M. McEIigot, and T.W. Eagar:Weld. J., 1991, vol. 70, pp. 20s-31s.

    Google Scholar 

  31. C.J. Cooksey and D.R. Milner:Physics of the Welding Arc, The Institute of Welding, London, 1962, pp. 123–32.

    Google Scholar 

  32. T.B. Hazlett and G.M. Gordon:Weld. J., 1957, vol. 36, pp. 382s-386s.

    CAS  Google Scholar 

  33. L.F. Defize:Physics of the Welding Arc, The Institute of Welding, London, 1962, pp. 112–14.

    Google Scholar 

  34. H. Maecker:Zeitschrift für Physik, 1955, vol. 141, pp. 198–216.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Graduate Student, Massachusetts Institute of Technology

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jönsson, P.G., Eagar, T.W. & Szekely, J. Heat and metal transfer in gas metal arc welding using argon and helium. Metall Mater Trans B 26, 383–395 (1995). https://doi.org/10.1007/BF02660980

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02660980

Keywords

Navigation