Skip to main content
Log in

The modeling of transverse solids motion in rotary kilns

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

Mathematical models have been developed to predict the conditions giving rise to the different forms of transverse bed motion in a rotary cylinder: slumping, rolling, slipping, cascading, cataracting, and centrifuging. Model predictions of the boundaries between these modes of bed motion compare well with previously reported measurements, and can be represented conveniently on a Bed Behavior Diagram which is a plot of pct fill against Froude number (or bed depthvs rotational speed). The location of the boundaries is shown to depend on material variables which characterize frictional conditions in the bed. For the slumping/rolling boundary these are primarily the shear angle and the limiting wedge angle which defines the solids involved in a slump. For the slipping/slumping and slipping/rolling boundaries the governing material variables are the bed/wall friction angle and the upper angle of repose and dynamic angle of repose, respectively. Similarly, the location of the other boundaries related to cascading and cataracting is determined by the dynamic angle of repose. Complete Bed Behavior Diagrams have been calculated for solids having different particle size and particle shape rotated in cylinders having different diameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Henein, J. K. Brimacombe, and A. P. Watkinson:Metall. Trans. B, 1983, vol. 14B0, pp. 191–205.

    CAS  Google Scholar 

  2. W. Schnabel: Ph.D. Thesis, Rheinisch-WestfÄlischen Technischen Hochschule Aachen, 1977.

  3. R. Hogg: Ph.D. Thesis, University of California, Berkeley, CA, 1970.

    Google Scholar 

  4. J. Lehmberg, M. Hehl, and K. Schügerl:Powder Tech., 1977, vol. 18, pp. 149–63.

    Article  CAS  Google Scholar 

  5. K.W. Carley-Macauly and M. B. Donald:Chem. Eng. Sci., 1962, vol. 17, pp. 493–506.

    Article  Google Scholar 

  6. K.W. Carley-Macauly and M. B. Donald:Chem. Eng. Sci., 1964, vol. 19, pp. 191–99.

    Article  CAS  Google Scholar 

  7. Y. Oyama:Rikwagaku-Kenkyo-Jo-Iho Bull., 1935, vol. 14, pp. 570–83.

    CAS  Google Scholar 

  8. J. B. Gayle and J.H. Gary:Industrial and Engineering Chemistry, 1960, vol. 52, pp. 519–20.

    Article  CAS  Google Scholar 

  9. P.M.C. Lacey:J. Appl. Chem., 1954, vol. 4, pp. 257–68.

    Article  CAS  Google Scholar 

  10. P. V. Danckwerts:Research, 1953, vol. 6, p. 355.

    Google Scholar 

  11. C.W. Clump: “Mixing of Solids,” chapter 10, vol. 2, J.B. Gray and V. W. Uhl, eds.,Mixing;Theory and Practices, Academic Press, New York, NY, 1966/67.

    Google Scholar 

  12. R. Hogg:Int. Conf. in Part. Technol., 1st Itl. Inst. of Technol. Res. Inst., IIT Res. Inst., Chicago, IL, 1973, pp. 157–64.

    Google Scholar 

  13. H. Taubman:Aufbereitungstechn, 1963, vol. 4, pp. 139–50.

    Google Scholar 

  14. W. R. Uggla:Revue des Matériaux de Construction et de Travaux Publics, 1930, ed. C, pp. 447–53.

    Google Scholar 

  15. J. J. Ronco:Industria y Quimica, 1960, vol. 20, pp. 605–14.

    Google Scholar 

  16. J. J. Ronco and M. de Santiago: Universidad Nacional de La Plata, Laboratorio de Ensayo de Materiales e Investigaciones Tecnológicas de la Provincia de Buen Aires (LEMIT), La Plata, RepÚblica Argentina, unpublished research, 1959.

  17. E. I. Khodorov:The Movement of Material in Rotary Kilns, Moscow, 1957.

  18. G. von Halbart and V. Freymann:Zement-Kalk-Gips, 1960, vol. 13, pp. 17–23.

    Google Scholar 

  19. G. Reuter: Ph.D. Thesis, Rheinisch-WestfÄlischen Technischen Hochschule Aachen, 1975.

  20. M. Cross: Report No. GS/TECH/553/1/74/C, British Steel Corp., London, U.K., 1974.

    Google Scholar 

  21. M. Cross:Powder Technology, 1979, vol. 22, pp. 187–90.

    Article  Google Scholar 

  22. H. Henein: Ph.D. Thesis, The University of British Columbia, Vancouver, Canada, 1981.

    Google Scholar 

  23. E. W. Davis:Trans. AIME, 1919, vol. 61, pp.250–966.

    Google Scholar 

  24. G. G. Eichholz: Investigation Report IR 59-25, Mines Branch, Ottawa, Canada, 1959.

    Google Scholar 

  25. H. E. Rose and R. M. E. Sullivan:A Treatise on the Internal Mechanics of Ball, Tube and Rod Mills, Constable and Company Ltd., London, 1957.

    Google Scholar 

  26. R. Rutgers:Chem. Eng. Sc., 1965, vol. 20, pp. 1079–87.

    Article  CAS  Google Scholar 

  27. W. D. Duda:Cement-Data-Book, 2nd ed., Macdonald & Evans, London, 1977, pp. 111–21 and pp. 319-26.

    Google Scholar 

  28. A. M. Gow, A. B. Campbell, and W. H. Coghill:Trans. AIME, 1930, vol. 87, pp. 51–81.

    Google Scholar 

  29. C.E. Sunnergren: Bethlehem Steel Corporation, Bethlehem, PA, 1979, National Lime Association Operators Meeting, Seattle, WA, 1979.

  30. W. Zimmer: K. V. S. Corporation, Danville, PA, private communications, 1979.

  31. E. Whitlock: Lime Division, Domtar Chemical Ltd., Montreal, Canada, private communications, 1979.

  32. H.E. Rose and G.D. Blunt:Proc. Instn. Mech. Engrs., 1956, vol. 170, p. 793.

    Google Scholar 

  33. V. I. Korotich:Stal in English, 1961, vol. 8, pp. 554–60.

    Google Scholar 

  34. R. E. Johnstone and M. W. Thring:Pilot Plants, Models and Scale-up Methods in Chemical Engineering, 1975, McGraw-Hill Book Co., New York, NY, pp. 226–32.

    Google Scholar 

  35. K. Darra and D.W BlungFuerstenau: Powder Technology, 1977, vol. 16, pp. 97–105.

    Article  Google Scholar 

  36. Fr. Muller:Aufbereitungs-Technik, 1966, vol. 5, pp. 274–85.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

H. Henein, formerly Graduate Student, Department of Metallurgical Engineering, University of British Columbia

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henein, H., Brimacombe, J.K. & Watkinson, A.P. The modeling of transverse solids motion in rotary kilns. Metall Trans B 14, 207–220 (1983). https://doi.org/10.1007/BF02661017

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02661017

Keywords

Navigation