Skip to main content
Log in

Thermodynamics of roasting arsenopyrite

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

Existing thermodynamic data for the Fe-As-S-0 system were evaluted and predominance area diagrams for that system were constructed at 798 and 973 K. Isopleths for the As/S and As/O atomic ratios in the vapor phase have been added to the diagrams by solving the complex equilibria. These modified diagrams were used to evaluate the results of roasting both natural and synthetic arsenopyrite (FeAsS) in inert, reducing, and oxidizing atmospheres at 798 and 873 K. Conditions leading to the retention of As as As2O5(s) and FeAsO4(s) were also reviewed. The experimental results indicate that both reducing and oxidizing atmospheres are more effective in the removal of As than an inert atmosphere. In a reducing atmosphere arsenic sulfides are evolved and the percentage of As removal increases with decreasing PO 2The greatest percent of As removal occurred with highly oxidizing atmospheres which generated As4O6 vapor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. K. Biswas and W. G. Davenport:Extractive Metallurgy of Copper, Pergamon Press, Toronto, 1976, vol. 20, p. 224.

    Google Scholar 

  2. I. J. Weisenberg, P. S. Bakshi, and A. E. Vervaert:J. Met., October 1979, vol. 31, pp. 38–44.

    Google Scholar 

  3. R. H. Hultgren, P. D. Desai, D. T. Hawkins, M. Gleiser, K. K. Kelley, and D. D. Wagman:Selected Values of Thermodynamic Properties of the Elements, ASM, Metals Park. OH, 1973, pp. 39–46.

    Google Scholar 

  4. H. Rau:J. Chem. Thermodyn., 1975, vol. 7, pp. 27–32.

    Article  CAS  Google Scholar 

  5. J. J. Murray, C. Pupp, and R. F. Pottie:J. Chem. Phys., 1973, vol. 58, pp. 2569–78.

    Article  CAS  Google Scholar 

  6. J. Drowart, S. Smoes, and A. Vanderauwera-Mahieu:J. Chem. Thermodyn., 1978, vol. 10, pp. 453–64.

    Article  CAS  Google Scholar 

  7. D.M. Dabbs: University of Washington, Seattle, WA, unpublished research, 1982.

  8. J. W. Mellor:A Comprehensive Treatise on Inorganic and Theoretical Chemistry, Longmans, Green and Co., London, 1929, vol. IX, pp. 139–41 and p. 265.

    Google Scholar 

  9. S. Maske and B. J. Skinner:Econ. Geol., 1971, vol. 66, pp. 901–18.

    CAS  Google Scholar 

  10. P. B. Barton, Jr.:Geochim. Cosmochim. Acta, 1969, vol. 33, pp. 841–57.

    Article  CAS  Google Scholar 

  11. Z. A. Munir, G. B. Street, and H. F. Winters:J. Chem. Phys., 1971, vol. 55, pp. 4520–27.

    Article  CAS  Google Scholar 

  12. K. H. Lau: SRI International, Menlo Park, CA, unpublished research, 1982.

  13. G. K. Johnson, G.N. Papatheodorou, and C.E. Johnson:J. Chem. Thermodyn., 1980, vol. 12, pp. 545–57.

    Article  CAS  Google Scholar 

  14. G. B. Street and Z. A. Munir:J. Inorg. Nucl. Chem., 1970, vol. 32, pp. 3769–74.

    Article  CAS  Google Scholar 

  15. O. Kubaschewski and C. B. Alcock:Metallurgical Thermochemistry, 5th ed., Pergamon Press, New York, NY, 1979, vol. 24, p. 185.

    Google Scholar 

  16. G. P. Utsyugov, A.A. Kudryavtser, and B.M. Kuadzhe:Neorg. Matr., Izr. Akad. Nauk. SSR, 1968, vol. 4, pp. 1338–39.

    Google Scholar 

  17. B. A. Strathdee and L. M. Pidgeon:Can. Min. Metall. Bull., 1961, vol. 54, pp. 883–87.

    CAS  Google Scholar 

  18. R. A. Isakova and V. N. Nesterov:Tr. Inst. Met. i Obogashch., Akad. Nauk. Kaz. SSR, 1962, vol. 5, pp. 29–33.

    CAS  Google Scholar 

  19. C. M. Hsiao and A. W. Schlechten:J. Met., 1952, vol. 4, pp. 65–69; also,Trans. AIME, 1952, vol. 194, pp. 65–69.

    CAS  Google Scholar 

  20. R. C. Weast and M. J. Astle, eds.:CRC Handbook of Chemistry and Physics, 60th ed., CRC Press, Boca Raton, FL, 1979, p. B-58.

    Google Scholar 

  21. F. M. Faure, M. J. Mitchell, and R. W. Bartlett:High Temp. Sci., 1973, vol. 5, pp. 128–37.

    CAS  Google Scholar 

  22. D. C. Lynch:Metall. Trans. B, 1982, vol. 13B, pp. 285–88.

    CAS  Google Scholar 

  23. K. C. Mills:Thermodynamic Data for Inorganic Sulphides, Selenides and Tellurides, Butterworth, London, 1974, p. 739.

    Google Scholar 

  24. R.G. Behrens and G.M. Rosenblatt:J. Chem. Thermodyn., 1972, vol. 4, pp. 175–90.

    Article  Google Scholar 

  25. H. Guérin and R. Boulitrap:Compt. Rend., 1953, vol. 236, p. 83.

    Google Scholar 

  26. A. N. Polukarov, M. Zh. Makhmetor, and E. A. Buketov:Russ. J. Phys. Chem. (Eng. Trans.), 1971, vol. 45, p. 1527.

    Google Scholar 

  27. A. Vian, C. Iriarte, and A. Romero:Ind. Eng. Chem. Process Des. Dev., 1963, vol. 2, pp. 214–23.

    Article  CAS  Google Scholar 

  28. P. B. Barton, Jr. and P. Toulmin, III:Geochim. Cosmochim. Acta, 1964, vol. 28, pp. 619–40.

    Article  CAS  Google Scholar 

  29. P. Toulmin, III and P. B. Barton, Jr.:Geochim. Cosmochim. Acta, 1964, vol. 28, pp. 641–71.

    Article  CAS  Google Scholar 

  30. L. A. Clark:Econ. Geol., 1960, vol. 55, pp. 1345–81 and 1631-52.

    Article  CAS  Google Scholar 

  31. D.C. Lynch:Metall. Trans. B, 1980, vol. 11B, pp. 623–29.

    CAS  Google Scholar 

  32. R. C. Weast and M. J. Astle, eds.:CRC Handbook of Chemistry and Physics, 60th ed., CRC Press, Boca Raton, FL, 1979, p. D-45.

    Google Scholar 

  33. K. Denbigh:The Principles of Chemical Equilibrium, Cambridge Univ. Press, 1955, pp. 180–93.

  34. T. Rosenqvist:Principles of Extractive Metallurgy, McGraw-Hill, New York, NY, 1979, pp. 63–70.

    Google Scholar 

  35. S.I. Sandier:Chemical and Engineering Thermodynamics, John Wiley and Sons, New York, NY, 1977, pp. 310–14.

    Google Scholar 

  36. A. D. Tevebaugh and E. J. Cairns: Final Technical Report; Section II Contract No. DA-44-009-ENG-4853, ARPA Order No. 247-61, Ft. Belvoir, VA, December 1962.

  37. E. J. Cairns and A. D. Tevebaugh:J. Chem. Eng. Data, 1964, vol. 9, pp. 453–62.

    Article  CAS  Google Scholar 

  38. A. D. Tevebaugh and E. J. Cairns:J. Chem. Eng. Data, 1965, vol. 10, pp. 359–62.

    Article  CAS  Google Scholar 

  39. H. A. Liebhafsky and E. J. Cairns:Fuel Cells and Fuel Batteries, John Wiley and Sons, New York, NY, 1968, pp.463–67.

    Google Scholar 

  40. K. Natesan:MFPG Conference Proceedings on Prevention of Failures in Coal Conversion Systems, U.S. Dept. of Commerce, N.B.S. Special Publication 468, April 1976, pp. 159–67.

  41. O.K. Chopraand K. Natesan:High Temp. Sci., 1977, vol. 9, pp. 243–56.

    CAS  Google Scholar 

  42. S. Mohnot and B. G. Kyle:Ind. Eng. Chem. Process Des. Dev., 1978, vol. 17, pp. 270–72.

    Article  CAS  Google Scholar 

  43. S. Schechter and H. Wise:J. Phys.Chem., 1979, vol. 83, pp. 2107–11.

    Article  CAS  Google Scholar 

  44. M. Donley and Y. K. Rao:J. Cryst. Growth, 1982, vol. 58, pp. 273–78.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakraborti, N., Lynch, D.C. Thermodynamics of roasting arsenopyrite. Metall Trans B 14, 239–251 (1983). https://doi.org/10.1007/BF02661020

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02661020

Keywords

Navigation