Skip to main content
Log in

Basal slip and twinning in α-titanium single crystals

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Single crystals of α-titanium, with small Schmid factors for prismatic slip, have been deformed in tension between 78 and 1120 K. At low temperatures, {1012} twinning has been observed in specimens having the angle between the basal plane and the tensile axis,x B , close to 90 deg, whereas at intermediate orientations withx B = 60 deg and 47 deg twinning occurs on the {1121} planes. A critical resolved shear stress law is not obeyed for either twinning mode. First order prismatic slip in the microstrain region appears to be responsible for the nucleation of {1121 twins. Slip is unlikely a pre-requisite for {1012} twinning.

Basal slip without interference from twinning is observed in a variety of orientations at temperatures above 500 K. Plastic flow above 900 K may be described by an equation of the form:γ=Aτ ne-Q/kT The relative ease of basal and prismatic slip in Ti and Zr is discussed in terms of the hcp ⇆ bcc allotropic transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. D. Rosi, C. A. Dube, and B. H. Alexander:J. Metals, 1953, vol. 5, p. 257.

    CAS  Google Scholar 

  2. D. C. Jillson:J. Metals, 1953, vol. 5, p. 1191.

    Google Scholar 

  3. A. T. Churchman:Proc. Roy. Soc. (London), Ser. A, 1954, vol. 226, p. 216.

    Article  ADS  CAS  Google Scholar 

  4. E. D. Levine:Trans. TMS-AIME, 1966, vol. 236, p. 1558.

    CAS  Google Scholar 

  5. T. Tanaka and H. Conrad:Acta Met., 1972, vol. 20, p. 1019.

    Article  CAS  Google Scholar 

  6. A. Akhtar and E. Teghtsoonian:University of British Columbia, Vancouver, Canada “Prismatic Slip in Titanium”, unpublished data.

  7. W. F. Kocks and D. G. Westlake:Trans. TMS-AIME, 1967, vol. 239, p. 1107.

    CAS  Google Scholar 

  8. P. G. Patridge and C. J. Peel:The Science, Technology and Application of Titanium, R. I. Jaffe and N. E. Promisel, eds., p. 157, Pergamon Press, Cambridge, 1970.

    Google Scholar 

  9. C. J. Beevers:The Science, Technology and Application of Titanium, R. I. Jaffe and N. E. Promisel, eds., p. 535, Pergamon Press, Cambridge, 1970.

    Google Scholar 

  10. N. E. Paton and W. A. Backofen:Met. Trans., 1970, vol. 1, p. 2839.

    CAS  Google Scholar 

  11. H. Conrad, M. Doner, and B. deMeester:Titanium Science and Technology, vol. 2, R. I. Jaffe and H. M. Burte, eds., p. 969, Plenum Press, 1973.

  12. E. S. Fisher and C. J. Renken:Phys. Rev., 1964, vol. 135, p. A482.

    Article  ADS  Google Scholar 

  13. T. R. Cass:Trans. TMS-AIME, 1967, vol. 239, p. 1864.

    CAS  Google Scholar 

  14. A. Akhtar and E. Teghtsoonian: “Dislocation Substructure in α-Ti Single Crystals”,J. Crystal Growth, in press.

  15. A. Akhtar:Acta Met., 1973, vol. 21, p. 1.

    Article  Google Scholar 

  16. H. Conrad and H. Wiedersich:Acta Met., 1960, vol. 8, p. 128.

    Article  Google Scholar 

  17. E. J. Rapperport:Acta Met., 1959, vol. 7, p. 254.

    Article  Google Scholar 

  18. R. E. Reed-Hill, W. A. Slippy, and L. J. Buteau:Trans. TMS-AIME, 1963, vol. 227, p. 976.

    CAS  Google Scholar 

  19. D. G. Westlake:Deformation Twinning, R. E. Reed-Hill,et al., eds., p. 29, Gordon and Breach, New York, 1964.

    Google Scholar 

  20. K.G. Davis and E. Teghtsoonian:Acta Met., 1962, vol. 10, p. 1189.

    Article  CAS  Google Scholar 

  21. A. T. Churchman:Trans. TMS-AIME, 1960, vol. 218, p. 262.

    CAS  Google Scholar 

  22. G. A. Geach, R. A. Jeffery, and E. Smith:Rhenium, B. W. Gonser, ed., p. 96, Elsevier, Amsterdam, 1962.

    Google Scholar 

  23. R. A. Jeffery and E. Smith:Phil. Mag., 1966, vol. 13, p. 1163.

    Article  ADS  CAS  Google Scholar 

  24. E. J. Freise and A. Kelly:Proc. Roy. Soc. (London), 1961, vol. A264, p. 269.

    ADS  Google Scholar 

  25. R. E. Reed-Hill:Deformation Twinning, R. E. Reed-Hill,et al., eds., p. 295, Gordon and Breach, New York, 1964.

    Google Scholar 

  26. T. L. Atshuler and J.W. Christian:Acta Met., 1966, vol. 14, p. 903.

    Article  Google Scholar 

  27. D. Hull:Deformation Twinning, R. E. Reed-Hill,et al., eds., p. 121, Gordon and Breach, New York, 1964.

    Google Scholar 

  28. J. Friedel:Internal Stress and Fatigue in Metals, G. M. Rassweiler and W. L. Grube, eds., p. 238, Elsevier, Amsterdam, 1959.

    Google Scholar 

  29. C. M. Libanti and Sra F. Dyment:Acta Met., 1963, vol. 11, p. 1263.

    Article  Google Scholar 

  30. W.R. Tyson:Acta Met, 1967, vol. 15, p. 574.

    Article  CAS  Google Scholar 

  31. H. S. Rosenbaum:Deformation Twinning, R. E. Reed-Hill,et al., eds., p. 43, Gordon and Breach, New York, 1964.

    Google Scholar 

  32. P. Regnier and J. M. Dupouy:Phys. Status Solidi, 1968, vol. 28, p. K55.

    Article  CAS  Google Scholar 

  33. A. Akhtar and E. Teghtsoonian:Acta Met., 1971, vol. 19, p. 655.

    Article  CAS  Google Scholar 

  34. P. Regnier and J. M. Dupouy:Trans. Japan Inst. Metals, Supplement, 1968, vol. 9, p. 827.

    Google Scholar 

  35. T. Sakai and M. E. Fine:Scripta Met., 1974, vol. 8, p. 545.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akhtar, A. Basal slip and twinning in α-titanium single crystals. Metall Trans A 6, 1105–1113 (1975). https://doi.org/10.1007/BF02661366

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02661366

Keywords

Navigation