Skip to main content
Log in

Morphological and structural studies of thermoelastic martensites in a Ag-38 At. Pct Zn alloy

  • Transformations
  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Thermoelastic martensites formed upon subzero cooling a Ag-38 at. pct Zn alloy have been studied by means of optical and electron microscopy, electron diffraction, and electrical resistivityvs temperature measurements. Two different morphologies, slender banded and spear shaped, are observed in cooled bulk specimens, both being thermoelastic. The slender banded martensite is retained at room temperature in thin foils after subzero cooling and possesses the 9R type long period stacking order structure with internal stacking faults on the basal plane. This 9R martensite is “normal” with an orthorhombic lattice:a=4.81,b=2.82 andc=20.5Å (a:b:c=1.71:1:7.27). The spear shaped martensite is also retained at room temperature in subzero cooled thin foils and in shape memory cycled ribbons as well. This morphology exhibits a monoclinic 3R type stacking order structure with internal twins and stacking faults. Lattice parameters of the 3R martensite area=4.83,b=2.87,c=6.94Å and β=87.4 deg (a:b:c=1.68:1:2.41). This structure is equivalent to that of AuCuI (L10, fct) with lattice parametersa=4.07,c=3.89, andc/a=0.96. The twin and stacking fault planes in the 3R martensite are the (201) and (001) planes respectively. The basal planes of the 9R and 3R martensites are common, being generated from the {110} plane of the CsCl type parent phase, and the two martensites differ only in the shuffling mode on the {110} plane upon transformation. The thermelastic nature of the 3R martensite is slightly different from that of the 9R one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. V. Kurdjumov and L. G. Khandros:Dokl. Akad. Nauk USSR, 1949, vol. 66, p. 211.

    Google Scholar 

  2. C. M. Wayman and K. Shimizu:Metal. Sci. J., 1972, vol. 6, p. 1975.

    Google Scholar 

  3. K. Otsuka and C. M. Wayman: inRevies on the Deformation Behavior of Materials, P. Feltham, ed., in press

  4. L. Delaey and H. Warlimont,Progr. in Materials Science, p. 18, 1974.

  5. H. Pops and T. B., Masslski:Trans. TMS-AIME, 1965, vol. 233, p. 728.

    CAS  Google Scholar 

  6. H. Pops and T. B. Massalski:Acta Met., 1967, vol. 15, p. 1770.

    Article  CAS  Google Scholar 

  7. J. D., Ayers and C. P. Herring:J. Mater. Sci., 1971, vol. 6, p. 1325.

    Article  CAS  Google Scholar 

  8. I. Cornelis and C. M. Wayman:Scr. Met., 1974, vol. 8, p. 1321.

    Article  CAS  Google Scholar 

  9. L. C. Brown and M. J. Stewart:Trans. TMS-AIME, 1968, vol. 242, p. 1353.

    CAS  Google Scholar 

  10. R. V. Krishnan, and L. C. Brown:Scr. Met., 1972, vol. 6, p. 883.

    Article  CAS  Google Scholar 

  11. J. D. Ayers:Acta Met., 1974, vol. 22, p. 611.

    Article  CAS  Google Scholar 

  12. E. A. Owen and I. G. Edmunds:J. Inst. Metals, 1938, vol. 63, p. 265.

    Google Scholar 

  13. K. Takezawa and S. Sato:J. Jap. Inst. Metals., 1973, vol. 37, p. 793.

    CAS  Google Scholar 

  14. M. Chandrasekaran, L. Delaey, J. V. Paemel, and R. Rapacioli:Z. Metallk., 1976, vol. 67, p. 323.

    CAS  Google Scholar 

  15. A. Prasetyo, F. Reynaud, and H. Warlimont:Acta Met., 1976, vol. 24, p. 651.

    Article  CAS  Google Scholar 

  16. International Tables for X-ray Crystallography, N. F. M. Henry and K. Lonsdale, eds., vol. 1. The Kynoth Press, Birmingham, England, 1952.

    Google Scholar 

  17. T. Tadaki, M. Tokoro, and K. Shimiru:Trans. Jap. Inst. Metals., 1975, vol. 16, p. 285.

    CAS  Google Scholar 

  18. K. Otsuka, K. Shimizu, I. Cornelis, and C. M. Wayman:Scr. Met., 1972, vol. 6, p. 377.

    Article  CAS  Google Scholar 

  19. H. C. Tong, and C. M. Wayman:Scr. Met., 1973, vol. 7, p. 215.

    Article  CAS  Google Scholar 

  20. H. Kubo, A. Hamabe, and K. Shimizu:Scr. Met., 1975, vol 9, p. 1083.

    Article  Google Scholar 

  21. K. Shimizu, H. Sakamoto, and K. Otsuka:Trans. Jap. Inst. Metals, 1975, vol. 16, p. 581.

    CAS  Google Scholar 

  22. Z. Nishiyama and S. Kajiwara,Jap. J. Appl. Phys., 1963, vol. 2, p. 478.

    Article  CAS  Google Scholar 

  23. K. Otsuka and K. Shimizu:Jap. J. Appl. Phys., 1969, vol. 8, p. 1196.

    Article  CAS  Google Scholar 

  24. T. Tadaki, S. Hamada, and K. Shimizu: to be published inTrans. Jap. Inst. Metals, 1976.

  25. K. Enami, S. Nenno, and K. Shimizu:Trans. Jap. Inst. Metals, 1974, vol. 4, p. 161.

    Google Scholar 

  26. S. Chakravorty and C. M. Wayman,Met. Trans. A., 1976, vol. 7A, p. 555; 1976, vol. 7A, p. 565.

    Article  CAS  Google Scholar 

  27. For example, Z. Nishiyama:Martensitic Transformations, Academic Press. 1976, in press.

  28. E. Hornbogen, A. Segmuller, and G. Wassermann:Z. Metallk., 1957, vol. 48, p. 379.

    CAS  Google Scholar 

  29. S. Kajiwara:J. Phys. Soc. Jap, 1971, vol. 30, p. 1757.

    Article  CAS  Google Scholar 

  30. I. Cornelis and C. M. Wayman:Acta Met., 1974, vol. 22, p. 291.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kubo, H., Shimizu, K. & Wayman, C.M. Morphological and structural studies of thermoelastic martensites in a Ag-38 At. Pct Zn alloy. Metall Trans A 8, 493–502 (1977). https://doi.org/10.1007/BF02661761

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02661761

Keywords

Navigation