Skip to main content
Log in

Caustic stress corrosion cracking of NiCrMoV rotor steels—The effects of impurity segregation and variation in alloy composition

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

This paper reports a study of the effects of phosphorus, tin, and molybdenum on the caustic stress corrosion cracking susceptibility of NiCrMoV rotor steels. Constant load tests were performed on these steels in 9M NaOH at 98 ± 1 °C at a controlled potential of either -800 mVHg/Hgo or -400 mVHg/Hgo. Times to failure were measured. The results show that at a potential of -400 mVHg/Hgo the segregation of phosphorus to grain boundaries lowers the resistance of these steels to caustic stress corrosion cracking. When molybdenum is removed from a steel that has phosphorus segregated to the grain boundaries, the steel’s resistance to stress corrosion cracking is improved. High purity alloys, both with and without molybdenum, show very good resistance to caustic cracking at this potential. At-800 mVHg/Hgo segregated phophorus has no effect; only molybdenum additions lower the resistance of the steel to caustic stress corrosion cracking. Segregated tin has little effect at either potential. Metallographic examination shows that one explanation for these results is that molybdenum and phosphorus, probably as anions precipitated from solution, aid in passivating the sides of the crack and thus help keep the crack tip sharp. This sharpness will increase the speed with which the crack will propagate through the sample. Furthermore, removal of molybdenum greatly increases the number of cracks which nucleate. This higher crack density would increase the relative area of the anode to the cathode and thus act to decrease the crack growth rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Hodge and I.L. Mogford:Proc. Inst. Mech. Eng., 1979, vol. 193, p. 93.

    Google Scholar 

  2. J.L. Gray:Proc. Inst. Mech. Eng., 1972, vol. 186, p. 379.

    CAS  Google Scholar 

  3. D. Kalderon:Proc. Inst. Mech. Eng., 1972, vol. 186, p. 341.

    CAS  Google Scholar 

  4. A. R. Ellery:J. Australasian Inst. Metals, 1976, vol. 21, p. 103.

    CAS  Google Scholar 

  5. J. G. Parker and M. A. Sadler:Corrosion Sci., 1975, vol. 15, p. 57.

    Article  CAS  Google Scholar 

  6. FredF. Lyle, Jr. and Herman C. Burghard, Jr.:Materials Perf., 1982, vol. 21, no. 11, p. 35.

    CAS  Google Scholar 

  7. Thomas G. McCord, Bruce W. Bussert, Robert M. Curran, and George C. Gould:Materials Perf., 1976, vol. 15, no. 2, p. 25.

    CAS  Google Scholar 

  8. B.W. Roberts and P. Greenfield:Corrosion, 1979, vol. 35, p. 402.

    CAS  Google Scholar 

  9. J.G. Parker:British Corrosion J., 1978, vol. 13, p. 75.

    CAS  Google Scholar 

  10. J.E. Reinoehl and W. E. Berry:Corrosion, 1972, vol. 28, p. 151.

    CAS  Google Scholar 

  11. D. Singbeil and D. Tromans:Metall. Trans. A, 1982, vol. 13A, p. 1091.

    CAS  Google Scholar 

  12. P. Doig and P.E. Flewitt:Corrosion Sci., 1977, vol. 17, p. 369.

    Article  CAS  Google Scholar 

  13. R.S. Shalvoy, S.K. Duglin, and R. J. UndingenCorrosion, 1981, vol. 37, p. 49.

    Google Scholar 

  14. R.N. Parkins, P.W. Slattery, and B.S. Poulson:Corrosion, 1981, vol. 37, p. 651.

    Google Scholar 

  15. M. Henthorne and R. N. Parkins:British Corrosion J., 1967, vol. 2, p. 186.

    CAS  Google Scholar 

  16. J. D. Atkinson, A. M. Adams, M. A. M. Khan, and P. J. Worthington: Central Electricity Research Laboratory, Leatherhead, England, Report No. RD/L/N169/79, January 1980.

  17. R. P. Harrison, D. deG. Jones, and J. F. Newman:Int. Conf. on Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys, R.W. Staehle, J. Hoehmann, and R.D. McCright, eds., Ferminy, France; NACE, Houston, TX, 1977, p. 659.

    Google Scholar 

  18. J. Woodward: Ph.D. Thesis, University of Cambridge, Cambridge, England, 1981.

    Google Scholar 

  19. D. L. Newhouse and H. G. Holtz: ASTM STP 407,Temper Embrittlement in Steels, D.L. Newhouse, ed., 1968, p. 106.

  20. G. C. Gould: ASTM STP 407,Temper Embrittlement in Steels, D. L. Newhouse, ed., 1968, p. 59.

  21. G.C. Gould: ASTM STP 407,Temper Embrittlement in Steels, D.L. Newhouse, ed., 1968, p. 90.

  22. D. L. Newhouse: ASTM STP 499,Temper Embrittlement of Alloy Steels, D.L. Newhouse, ed., 1972, p. 3.

  23. C.J. Boyle, R.M. Curran, D.R. DeForest, and D.L. Newhouse:Proc. ASTM, 1962, vol. 62, p. 1156.

    Google Scholar 

  24. R. Narayan and M. C. Murphy:J. Iron and Steel Institute, 1973, vol. 211, p. 493.

    CAS  Google Scholar 

  25. L.F. Porter, G.C. Carter, and S.J. Manganello: ASTM STP 407,Temper Embrittlement of Steels, D.L. Newhouse, ed., 1968, p. 20.

  26. J. F. Smith, J. H. Reynolds, and H. N. Southworth:Acta Met., 1980, vol. 28, p. 1555.

    Article  CAS  Google Scholar 

  27. R. B.Diegle and D. A. Vermilyea:Corrosion, 1976, vol. 32, p. 303.

    Google Scholar 

  28. C.J. Mahon, Jr. and L. Marchut:J. Vacuum Sci. Tech., 1978, vol. 15, p. 430.

    Google Scholar 

  29. N. Bandyopadhyay and C.L. Briant:Corrosion, 1982, vol. 38, p. 125.

    CAS  Google Scholar 

  30. C. Lea and E. D. Hondros:Proc. Roy. Soc. London A, 1981, vol. 377, p. 477.

    Article  CAS  Google Scholar 

  31. J. Kupper, H. Erhart, and H.J. Grabke:Corrosion Sci., 1981, vol. 21, p. 227.

    Article  Google Scholar 

  32. K. L. Moloznik, C.L. Briant, and C.J. McMahon, Jr.:Corrosion, 1979, vol. 35, p. 331.

    CAS  Google Scholar 

  33. M.P. Seah, P.J. Spencer, and E. D. Hondros:Metal Sci., 1979, vol. 13, p. 307.

    Article  CAS  Google Scholar 

  34. B. C. Edwards, B. L. Eyre, and G. Gage:Acta Met., 1980, vol. 28, p. 335.

    Article  CAS  Google Scholar 

  35. A. E. Powers:Trans. ASM, 1956, vol. 48, p. 149.

    Google Scholar 

  36. J. F. Newman: Central Electricity Research Laboratory, Leatherhead, England, Report RD/L/N186/73, 1973.

  37. T. Ogura, A. Makino, and T. Masumoto:ScriptaMet., 1980, vol. 14, p. 887.

    Article  CAS  Google Scholar 

  38. A. H. Ucisik, C. J. McMahon, Jr., and H. C. Feng:Metall. Trans. A, 1978, vol. 8A, p. 321.

    Google Scholar 

  39. T. Ogura, C. J. McMahon, Jr., H. C. Feng.and V. Vitek:Acta Met., 1978, vol. 26, p. 1317.

    Article  CAS  Google Scholar 

  40. R.A. Mulford, C.J. McMahon, Jr., D.P. Pope, and H.C. Feng:Metall. Trans. A, 1976, vol. 7A, p. 1183.

    CAS  Google Scholar 

  41. N. Bandyopadhyay and C.L. Briant:Scripta Met., 1982, vol. 16, p. 939.

    Article  CAS  Google Scholar 

  42. D. A. Vermilyea:J. Electrochem. Soc, 1972, vol. 119, p. 405.

    Article  CAS  Google Scholar 

  43. J. C. Scully:Corrosion Sci., 1975, vol. 15, p. 207.

    Article  CAS  Google Scholar 

  44. J.F. Knott:Metals Tech., 1982, vol. 9, p. 86.

    CAS  Google Scholar 

  45. F. P. Ford, G.T. Burstein, and T. P. Hoar:J. Electrochem. Soc., 1980, vol. 127, p. 1325.

    Article  CAS  Google Scholar 

  46. D. deG. Jones, J. F. Newman, and R. P. Harrison:Proc. Fifth International Congress on Metallic Corrosion, Norio Sato, ed., National Association of Corrosion Engineers, Houston, TX, 1974, p. 434.

    Google Scholar 

  47. N. Bandyopadhyay, C.L. Briant, P. Emigh, and F. P. Ford: ASTM STP 792, Micon 82: Optimization of Processing Properties and Service Performance through Microstructural Control, Halle Abrams, Elizabeth Clark, John Hood, and Brij Seth, eds., 1982, p. 104.

  48. R. E. Peterson:Stress Concentration Factors, John Wiley and Sons, New York, NY, 1974, p. 20.

    Google Scholar 

  49. J. F. Knott:Metal Science, 1980, vol. 14, p. 327.

    CAS  Google Scholar 

  50. J.Q. Clayton and J.F. Knott:Metal Science, 1976, vol. 10, p. 63.

    Article  CAS  Google Scholar 

  51. C.J. Cron.J.H. Payer, and R.W. Staehle:Corrosion, 1971, vol. 27, p. 1.

    Google Scholar 

  52. F. P. Ford: General Electric Company, Schenectady, NY, Report 81CRD280, 1981.

  53. C.L. Briant, R.A. Mulford, and E. L. Hall:Corrosion, 1982, vol. 38, p. 468.

    CAS  Google Scholar 

  54. A.E. Yaniv, J.B. Lumsden, and R.W. Staehle:J. Electrochem. Soc, 1977, vol. 123, p. 490.

    Article  Google Scholar 

  55. N. Bandyopadhyay and C. L. Briant: unpublished research, 1982.

  56. M. Naka, K. Hashimoto, and T. Masumoto:Corrosion, 1976, vol. 32, p. 146.

    CAS  Google Scholar 

  57. M. J. Pryor and M. Cohen:J. Electrochemical Soc, 1951, vol. 98, p. 263.

    CAS  Google Scholar 

  58. G.H. Awad and T.P. Hoar:Corrosion Sci., 1975, vol. 15, p. 581.

    Article  CAS  Google Scholar 

  59. A. M. J. Adams, J. D. Atkinson, F. P. Ford, and P. J. Worthjngton: Central Electricity Research Laboratories, Report RD/L/N36/75, May 1975.

  60. M.P. Seah:Surface Science, 1975, vol. 53, p. 168.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly with the Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bandyopadhyay, N., Briant, C.L. Caustic stress corrosion cracking of NiCrMoV rotor steels—The effects of impurity segregation and variation in alloy composition. Metall Trans A 14, 2005–2019 (1983). https://doi.org/10.1007/BF02662368

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02662368

Keywords

Navigation