Skip to main content
Log in

Crack growth from internal hydrogen—temperature and microstructural effects in 4340 steel

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Internal hydrogen effects on stage II crack growth rates in AISI 4340 steel have been studied as a function of test temperature. A model is developed that is physically based in that classical thermodynamics relates to solubility and trapping and Fick’s second law controls hydrogen transport. Both of these are microstructurally related to how trapping affects both the crack initiation site and diffusion to it. For two tempered conditions of 4340 steel, it is shown that there is a test temperature,T 0, for stage II crack growth, above which the crack does not grow. The fractography associated with test temperatures approachingT 0 tends toward 100 pct intergranular for both 1340 MPa and 1620 MPa strength levels. At lower test temperatures, there is as much as 50 pct microvoid coalescence or 30 pct quasi-cleavage. In the lower strength condition, hydrogen traps at oxysulfide particles with a binding energy near 75 kJ/mol. Where these intersect the prior austenite grain boundaries, this promotes fingers of intergranular fracture which later triggers tearing of 100 μm size ligaments by microvoid coalescence. For the higher strength material, it is proposed that hydrogen traps along martensite lath intersections with prior austenite grain boundaries, the binding energy being near 27 kJ/mol. This promotes 1 μm size striations along intergranular facets. In both cases the fractography is consistent with a proposed model of stress field concentration of hydrogen, further concentration along trap sites, fracture nucleation at trap sites, and local, discontinuous fracture instabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. H. Johnson, J.G. Morlet, and A.R. Troiano:Trans. TMS-AIME, 1958, vol. 212, p. 528.

    CAS  Google Scholar 

  2. A. R. Troiano:Trans. ASM, 1960, vol. 52, p. 54.

    Google Scholar 

  3. A. S. Tetelman:Fundamental Aspects of Stress Corrosion Cracking, The Ohio State University, 1967, NACE, Houston, TX, 1969, pp. 446–64.

    Google Scholar 

  4. D.P. Williams and H. G. Nelson:Metall. Trans., 1970, vol. 1, p. 63.

    CAS  Google Scholar 

  5. R.A. Oriani:Bunsen-Gesellshaft Phys. Chem., 1972, vol. 76, p. 848.

    CAS  Google Scholar 

  6. H. P. van Leeuwen:Corrosion, 1973, vol. 29, p. 197.

    Google Scholar 

  7. C. St. John and W. W. Gerberich:Metall. Trans., 1973, vol. 4, p. 589.

    Article  Google Scholar 

  8. W. W. Gerberich:Hydrogen in Metals, ASM, Metals Park, OH, 1974, pp. 115–47.

    Google Scholar 

  9. C. J. McMahon, Jr., C. L. Briant, and S. K. Banerji:Fracture 1977, Pergamon Press, New York, NY, 19.7, p. 363.

    Google Scholar 

  10. R.P. Gangloff and R.P. Wei:Metall. Trans. A, 1977, vol. 8A, p. 1043.

    CAS  Google Scholar 

  11. S. P. Lynch and N. F. Ryan:Proc. of 2nd Inter. Congress on Hydro- gen in Metals, Paris, Pergamon Press, Oxford, 1977.

    Google Scholar 

  12. G.W. Simmons, P.S. Pao, and R.P. Wei:Metall. Trans. A, 1978, vol. 9A, p. 1147.

    CAS  Google Scholar 

  13. A. W. Thompson:Metall. Trans. A, 1979, vol. 10A, p. 727.

    CAS  Google Scholar 

  14. J. K. Tien:Effect of Hydrogen on the Behavior of Materials, A. W. Thompson and I.M. Bernstein, eds., TMS-AIME, New York, NY, 1976, p. 309.

    Google Scholar 

  15. H. Vehoff and P. Neumann:Hydrogen Degradation of Ferrous Alloys, R. A. Oriani, J. P. Hirth, and M. Smialowska, eds., Noyes Publications, Park Ridge, NJ, 1985, pp. 686–711.

    Google Scholar 

  16. S.V. Nair and J. K. Tien:Metall. Trans. A, 1985, vol. 16A, p. 2333.

    CAS  Google Scholar 

  17. C.D. Beachem:Metall. Trans., 1972, vol. 3, p. 437.

    CAS  Google Scholar 

  18. R. W. Pasco, K. Sieradzki, and P. J. Ficalora:Scripta Metall., 1982, vol. 16, p. 881.

    Article  CAS  Google Scholar 

  19. H. W. Liu:Trans. ASME, J. Basic Engng., 1970, vol. 92, p. 633.

    CAS  Google Scholar 

  20. P. Doig and G.T. Jones:Metall. Trans. A, 1977, vol. 8A, p. 1993.

    CAS  Google Scholar 

  21. H. P. van Leeuwen:Reviews on Coatings and Corrosion, The Tech- nion, Haifa, Israel, 1979, vol. V, no. 1, pp. 5–93.

    Google Scholar 

  22. H. G. Nelson and D. P. Williams:Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys, Unieux-Firminy, France, NACE, Houston, TX, 1973, pp. 390–404.

    Google Scholar 

  23. R.P. Wei:Hydrogen Effects in Metals, A. W. Thompson and I.M. Bernstein, eds., ASM, Metals Park, OH, 1981, p. 677.

    Google Scholar 

  24. M. Gao, M. Lu, and R.P. Wei:Metall. Trans. A, 1984, vol. 15A, p. 735.

    CAS  Google Scholar 

  25. M. Gao, M. Lu, and R.P. Wei:Metall. Trans. A, 1985, vol. 16A, p. 2039.

    CAS  Google Scholar 

  26. W. W. Gerberich and K. A. Peterson: NBS/NRL Workshop on Stress Corrosion of Brittle Materials, Washington, DC, June 1981.

  27. K. A. Peterson: Ph.D. Thesis, University of Minnesota, Minneapolis, MN, 1981.

  28. W. W. Gerberich:Symposium on Hydrogen in Metals, Materials Research Society, Boston, MA, Nov. 1984.

    Google Scholar 

  29. W. W. Gerberich, T. Livne, and X. Chen: Symposium onModeling Environmental Effects on Crack Growth Processes, R. H. Jones and W.W. Gerberich, eds., TMS-AIME, 1986, p. 243.

  30. W.W. Gerberich and Y.T. Chen:Metall. Trans. A, 1975, vol. 6A, p. 271.

    CAS  Google Scholar 

  31. J.R. Rice:Corrosion, 1976, vol. 32, no. 1, p. 22.

    Google Scholar 

  32. P. Kedzierzawski:Hydrogen Degradation of Ferrous Alloys, R. A. Oriani, J.P. Hirth, and M. Smialowska, eds., Noyes Publications, Park Ridge, NJ, 1985, pp. 251–70; pp. 271-88.

    Google Scholar 

  33. I.M. Bernstein and G.M. Pressouyre:Hydrogen Degradation of Ferrous Alloys, R. A. Oriani, J. P. Hirth, and M. Smialowska, eds., Noyes Publications, Park Ridge, NJ, 1985, pp. 641–85.

    Google Scholar 

  34. W. W. Gerberich and A. G. Wright:Environmental Degradation of Engineering Materials in Hydrogen, Virginia Tech Printing Depart- ment, Blacksburg, VA, 1981, pp. 183–205.

    Google Scholar 

  35. P. G. Shewmon:Diffusion in Solids, McGraw-Hill, New York, NY, 1963.

    Google Scholar 

  36. H. H. Johnson:Stress Corrosion Cracking and Hydrogen Embrittle- ment of Iron Base Alloys, Unieux-Firminy, France, NACE, Houston, TX, 1973, pp. 382–89.

    Google Scholar 

  37. M. Ancouturier:Proc. First. Intern. Conf. on Current Solutions to Hydrogen Problems in Steels, C.G. Interrante and G.M. Pressouyre, eds., ASM, Metals Park, OH, 1982.

    Google Scholar 

  38. H. Y. Yu and J. C. M. Li:J. Nucl. Mat’ ls., 1976, vol. 20, p. 872.

    Google Scholar 

  39. K. A. Esaklul, A. G. Wright, and W. W. Gerberich:Scripta Metall., 1983, vol. 17, p. 1073 ; K.A. Esaklul, Ph.D. Thesis, University of Minnesota, 1984.

    Article  CAS  Google Scholar 

  40. R. A. Page and W.W. Gerberich:Metall. Trans. A, 1982, vol. 13A, p. 305.

    CAS  Google Scholar 

  41. D.L. Dull and L. Raymond:Metall. Trans., 1972, vol. 3, p. 2943.

    CAS  Google Scholar 

  42. D. D. Macdonald and H. H. Chung:Corrosion, 1985, vol. 41, no. 3, p. 151.

    CAS  Google Scholar 

  43. J.Y. Lee, J. L. Lee, and W. Y. Chou:Corrosion, 1985, vol. 41, no. 3, p. 423.

    Google Scholar 

  44. M.L. Jokl, J. Kameda, C.J. McMahon , Jr., and V. Vitek:Metal Science, 1980, p. 375.

  45. C. L. Briant, H. C. Feng, and C. J. McMahon, Jr.:Metall. Trans. A, 1978, vol. 9A, p. 625.

    CAS  Google Scholar 

  46. T. Asaoka, C. Dagbert, M. Ancouturier, and P. Lacombe:Corro- sion, 1980, vol. 36, p. 53.

    Google Scholar 

  47. G.M. Pressouyre:Metall. Trans. A, 1979, vol. 10A, p. 1571.

    CAS  Google Scholar 

  48. R. Gibala:Trans. TMS AIME, 1967, vol. 239, p. 1574.

    CAS  Google Scholar 

  49. R. A. Oriani:Acta Metall., 1970, vol. 18, p. 147.

    Article  CAS  Google Scholar 

  50. T. Asaoka:Proc. JIMIS-2, Hydrogen in Metals, Minikami, Japan Inst. Met., 1980, p. 161.

    Google Scholar 

  51. Y. Sakamoto and T. Mantani:Trans. Japan Inst. Metals, 1976, vol. 17, p. 743.

    CAS  Google Scholar 

  52. J. F. Knott:J. Iron Steel Inst., 1966, vol. 204, p. 104.

    CAS  Google Scholar 

  53. H. G. Ellerbrock, G. Vibrans, and H. P. Stüwe:Acta Metall., 1972, vol. 20, p. 53.

    Article  CAS  Google Scholar 

  54. G. M. Evans and E. C. Rollason:J. Iron Steel Inst., 1969, vol. 207, p. 1484.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerberich, W.W., L1vne, T., Chen, X.F. et al. Crack growth from internal hydrogen—temperature and microstructural effects in 4340 steel. Metall Trans A 19, 1319–1334 (1988). https://doi.org/10.1007/BF02662593

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02662593

Keywords

Navigation