Skip to main content
Log in

Microstructure evolution in tial alloys with b additions: Conventional solidification

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Solidification microstructures of arc-melted, near-equiatomic TiAl alloys containing boron additions are analyzed and compared with those of binary Ti-Al and Ti-B alloys processed in a similar fashion. With the exception of the boride phase, the matrix of the ternary alloy consists of the same α2 (DO19) and γ (Ll0) intermetallic phases found in the binary Ti-50 at. pct Al alloy. On the other hand, the boride phase, which is TiB (B27) in the binary Ti-B alloys, changes to TiB2 (C32) with the addition of Al. The solidification path of the ternary alloys starts with the formation of primary α (A3) for an alloy lean in boron (∼1 at. pct) and with primary TiB2 for a higher boron concentration (∼5 at. pct). In both cases, the system follows the liquidus surface down to a monovariant line, where both α and TiB2 are solidified concurrently. In the final stage, the α phase gives way to γ, presumably by a peritectic-type reaction similar to the one in the binary Ti-Al system. Upon cooling, the α dendrites order to α2 and later decompose to a lath structure consisting of alternating layers of γ and α2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H.A. Lipsitt: inHigh Temperature Ordered Intermetallic Alloys MRS Symposia Proc, C.C. Koch, C.T. Liu, and N.S Stoloff eds., MRS, Pittsburgh, PA, 1985, vol. 39, pp. 351–64

    Google Scholar 

  2. M.J. Blackburn: Pratt & Whitney Aircraft, unpublished research, 1986.

  3. J.L. Murray: inBinary Alloy Phase Diagrams, T.B. Massalski ed., ASM, Metals Park, OH, 1986, p. 173.

    Google Scholar 

  4. L.A. Willey and H. Margolin: inMetals Handbook, 8th ed., ASM, Metals Park, OH, 1973, vol. 8, p. 264.

    Google Scholar 

  5. R.E. Schafrik:Metall. Trans. A, 1977, vol. 8A, pp. 1003–06.

    CAS  Google Scholar 

  6. Harry A. Lipsitt, D. Shechtman, and Robert E. Schafrik:Metall Trans. A, 1975, vol. 6A, pp. 1991–96.

    CAS  Google Scholar 

  7. S.M.L. Sastry and H.A. Lipsitt: inTitanium '80: Science and Technology, H. Kimura and O. Izumi, eds., TMS-AIME Warrendale, PA, 1980, vol. 2, pp. 1231–43.

    Google Scholar 

  8. D.B. Marshall, B.N. Cox, and A.G. Evans:Acta Metall 1985 vol. 33(11), pp. 2013–21.

    Article  Google Scholar 

  9. CK. Elliot, G.R. Odette, G.E. Lucas, and J.W. Sheckherd: inHigh Temperature/High Performance Composites, MRS Sym- posia Proc, F.D. Lemkey, A.G. Evans, S.G. Fishman, and J.R. Strife, eds., MRS, Pittsburgh, PA, 1988, vol. 120, pp. 95–102

    Google Scholar 

  10. S.M.L. Sastry, T.C. Peng, and L.P. Beckerman:Metall. Trans. A, 1984, vol. 15A, pp. 1465–74.

    CAS  Google Scholar 

  11. R.G. Rowe and F.H. Froes: inProcessing of Structural Metals by Rapid Solidification, F.H. Froes and S.J. Savage, eds., ASM INTERNATIONAL, Metals Park, OH, 1987, pp. 163–74.

    Google Scholar 

  12. J.M. Duva:J. Eng. Mater. Tech., 1984, vol. 106, pp. 317–21.

    Article  Google Scholar 

  13. J.L. Murray, P.K. Liao, and K.E. Spear: inBinary Alloy Phase Diagrams, T.B. Massalski, ed., ASM, Metals Park, OH, 1986, pp. 387–92.

    Google Scholar 

  14. H.B. Bomberger and F.H. Froes: inTitanium Rapid Solidifica- tion Technology, F.H. Froes and D. Eylon, eds., TMS-AIME, Warrendale, PA, 1986, pp. 21–43.

    Google Scholar 

  15. S.H. Whang:J. Mater. Sci., 1986, vol. 21, pp. 2224–38.

    Article  CAS  Google Scholar 

  16. T. Lündstrom: inBoron and Refractory Borides, V.l. Matkovich, ed., Springer-Verlag, New York, NY, 1977, pp. 351–76.

    Google Scholar 

  17. B.F. Decker and R. Kasper:Acta Crystalloer., 1954, vol 7 pp. 77–80.

    Article  CAS  Google Scholar 

  18. C. McCullough, J.J. Valencia, H. Mateos, C. G. Levi, R. Mehrabian, and K.A. Rhyne:Scripta Metall., 1988, vol 22 pp. 1131–36.

    Article  CAS  Google Scholar 

  19. M.J. Blackburn: inThe Science, Technology and Application of Titanium, R.I. Jaffee and N.E. Promisel, eds., Pergamon Press, London, 1970, pp. 633–43.

    Google Scholar 

  20. J.J. Valencia, C. McCullough, C. G. Levi, and R. Mehrabian:Scripta Metall., 1987, vol. 21, pp. 1341–46.

    Article  CAS  Google Scholar 

  21. I. Maxwell and A. Hellawell:Metall. Trans., 1972, vol. 3, pp. 1487–93.

    Article  CAS  Google Scholar 

  22. L.F. Mondolfo:Aluminum Alloys, Structure and Properties, Butterworth's, London, 1976, pp. 437–39.

    Google Scholar 

  23. J.A. Marcantonio and L.F. Mondolfo:Metall.Trans.,1971,vol. 2, pp. 465–71.

    CAS  Google Scholar 

  24. L. Arnberg, L. BÄckerud, and H. Klang: inSolidification Tech- nology in the Foundry and the Cast House, Bartholomew Press, Surrey, United Kingdom, 1983, pp. 89–92.

    Google Scholar 

  25. G.P. Jones and J. Pearson:Metall. Trans. B, 1976, vol 7B pp. 223–34.

    CAS  Google Scholar 

  26. R.G. Fenish: Report No. NRM-138, Union Carbide Corp., Parma Research Center, Parma, OH, 1964.

    Google Scholar 

  27. F.W. Crossman and A.S. Yue:Metall. Trans., 1971, vol 2, pp. 1545–55.

    CAS  Google Scholar 

  28. G.J. Davies: inHigh Temperature Materials, John Wiley & Sons, New York, NY, 1965, pp. 603–50.

    Google Scholar 

  29. K.A. Jackson and J.D. Hunt:Trans. AIME, 1966, vol. 236, pp. 1129–42.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hyman, M.E., McCullough, C., Valencia, J.J. et al. Microstructure evolution in tial alloys with b additions: Conventional solidification. Metall Trans A 20, 1847–1859 (1989). https://doi.org/10.1007/BF02663215

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02663215

Keywords

Navigation