Skip to main content
Log in

Crack deflection: Implications for the growth of long and short fatigue cracks

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The influences of crack deflection on the growth rates ofnominally Mode I fatigue cracks are examined. Previous theoretical analyses of stress intensity solutions for kinked elastic cracks are reviewed. Simple elastic deflection models are developed to estimate the growth rates of nonlinear fatigue cracks subjected to various degrees of deflection, by incorporating changes in the effective driving force and in the apparent propagation rates. Experimental data are presented for intermediate-quenched and step-quenched conditions of Fe/2Si/0.1C ferrite-martensite dual phase steel, where variations in crack morphology alone influence considerably the fatigue crack propagation rates and threshold stress intensity range values. Such results are found to be in good quantitative agreement with the deflection model predictions of propagation rates for nonlinear cracks. Experimental information on crack deflection, induced by variable amplitude loading, is also provided for 2020-T651 aluminum alloy. It is demonstrated with the aid of elastic analyses and experiments that crack deflection models offer a physically-appealing rationale for the apparently slower growth rates of long fatigue cracks subjected to constant and variable amplitude loading and for the apparent deceleration and/or arrest of short cracks. The changes in the propagation rates of deflected fatigue cracks are discussed in terms of thelocal mode of crack advance, microstructure, effective driving force, growth mechanisms, mean stress, slip characteristics, and crack closure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

length of the main cracks

a ij :

angular functions

b :

length of the first kink

b 1 :

length of the fork

b 1 :

length of the second kink

c :

nominal length of a fatigue crack

D :

length of the deflected segment

dc/dN :

nominal crack growth rate

dc/dN :

growth rate of a deflected crack

k eff :

effective stress intensity factor for a deflected crack

k 1 :

Mode I stress intensity factor for a deflected crack

k 1 :

Mode I stress intensity factor for an inclined crack

K 1 :

Mode I stress intensity factor for a linear crack

jc 2 :

Mode II stress intensity factor for a deflected crack

k 2 :

Mode II stress intensity factor for an inclined crack

K II :

Mode II stress intensity factor for a linear crack

N :

number of fatigue cycles

R :

nominal load ratio (= (K 1)min/(K 1,(max)

R :

load ratio accounting for crack deflection (=k min/k max

R :

load ratio accounting for crack deflection and crack closure (=k cl/k max)

S :

length of the linear segment

α:

angle of second deflection for long tilted crack

δK eff :

effective stress intensity factor range accounting for deflection

δK eff :

effective stress intensity factor range accounting for crack closure

δK 1 :

nominal Mode I stress intensity factor range

δK 1 :

average stress intensity factor range in a segment

θ:

angle of first deflection for a long crack

θo :

angle of initial inclination for a short crack

θ1 :

angle of first deflection for a short crack

δΣe :

fatigue limit

δΣTH :

threshold cyclic stress range for short cracks

References

  1. F. Erdogan and G. C. Sih:J. Basic Eng., 1963, vol. 85, p. 519.

    Google Scholar 

  2. W. W. Gerberich and K. A. Peterson: inMicro and Macro Mechanics of Crack Growth, K. Sadananda, B. B. Rath, and D. J. Michel, eds., TMS-AIME, Warrendale, PA, 1982, p. 1.

    Google Scholar 

  3. J. Lankford and D. L. Davidson: inAdvances in Fracture Research, D. Francois, ed., Pergamon Press, Oxford, 1981, vol. 4, p. 899.

    Google Scholar 

  4. S. Suresh:Scripta Met., 1982, vol. 16, p. 995.

    Article  Google Scholar 

  5. A. K. Vasudevan, P. E. Bretz, A. C. Miller, and S. Suresh:Mat. Sci. Eng., 1983, in press.

  6. J. Lankford:Fat. Eng. Mater. Struct., 1982, vol. 5, p. 233.

    Article  Google Scholar 

  7. S. N. Chatterjee:Int. J. Solids Struct., 1975, vol. 15, p. 521.

    Article  Google Scholar 

  8. B. A. Bilby, G. E. Cardew, and I. C. Howard: inFracture 1977, D. M. R. Taplin, ed., University of Waterloo Press, 1977, vol. 3, p. 197.

  9. H. Kitagawa, R. Yuuki, and T. Ohira:Eng. Fract. Mech., 1975, vol. 7, p. 515.

    Article  Google Scholar 

  10. B. Cotterell and J. R. Rice:Int. J. Fract., 1980, vol. 16, p. 155.

    Article  Google Scholar 

  11. K. T. Faber and A. G. Evans:Acta Met., 1983, vol. 31, p. 565.

    Article  Google Scholar 

  12. F.-S. Lin and E. A. Starke:Mat. Sci. Eng., 1980, vol. 45, p. 153.

    Article  CAS  Google Scholar 

  13. M. O. Speidel:Stress Corrosion Cracking of Aluminum Alloys, Ohio State University Report, Columbus, OH, 1975.

    Google Scholar 

  14. S. Suresh:Eng. Fract. Mech., 1983, vol. 18, p. 577.

    Article  Google Scholar 

  15. F. Hourlier and A. Pineau: inAdvances in Fracture Research, D. Francois, ed., Pergamon Press, Oxford, 1981, vol. 4, p. 1833.

    Google Scholar 

  16. G. Hua, M. W. Brown, and K. J. Miller:Fat. Eng. Mater. Struct., 1982, vol. 5, p. 1.

    Article  Google Scholar 

  17. M. Truchon, M. Amestoy, and K. Dang-Van: inAdvances in Fracture Research, D. Francois, ed., Pergamon Press, Oxford, 1981, vol. 4, p. 1841.

    Google Scholar 

  18. A. Otsuka, K. Mori, T. Ohshima, and S. Tsuyama:ibid., 1981, vol. 4, p. 1851.

    Google Scholar 

  19. R. Badaliance:Eng. Fract. Mech., 1980, vol. 13, p. 657.

    Article  CAS  Google Scholar 

  20. A. B. Patel and R. K. Pandey:Fat. Eng. Mater. Struct., 1981, vol. 4, p. 65.

    Article  CAS  Google Scholar 

  21. K. Tanaka:Eng. Fract. Mech., 1974, vol. 6, p. 493.

    Article  CAS  Google Scholar 

  22. J. Lankford and D. L. Davidson:Acta Met., 1983, vol. 31, p. 1273.

    Article  CAS  Google Scholar 

  23. D. L. Davidson:Fat. Eng. Mater. Struct., 1981, vol. 3, p. 229.

    Article  Google Scholar 

  24. B. R. Lawn and T. R. Wilshaw:Fracture of Brittle Solids, Cambridge University Press, 1975.

  25. P. C. Paris and G. C. Sih:Stress Analysis of Cracks, ASTM STP 381, American Society for Testing and Materials, Philadelphia, PA, 1965, p. 30.

    Google Scholar 

  26. M. A. Hussain, S. L. Pu, and J. Underwood:Fracture Analysis, Part II, ASTM STP 560, P. C. Paris and G. R. Irwin, eds., American Society for Testing and Materials, 1974, p. 2.

  27. G. C. Sih:Int. J. Fract., 1974, vol. 10, p. 305.

    Article  Google Scholar 

  28. J. J. Petrovic and M. G. Mendiratta:J. Am. Ceramic Soc., 1977, vol. 60, p. 463.

    Article  Google Scholar 

  29. S. Suresh, G. F. Zamiski, and R. O. Ritchie:Metall. Trans. A, 1981, vol. 12A, p. 1435.

    Google Scholar 

  30. V. B. Dutta: M. S. Thesis, University of California, Berkeley, CA, 1983.

    Google Scholar 

  31. W. Elber: inDamage Tolerance in Aircraft Structures, ASTM STP 486, American Society for Testing and Materials, Philadelphia, PA, 1971, p. 230.

    Google Scholar 

  32. R. M. N. Pelloux:Eng. Fract. Mech., 1970, vol. 1, p. 697.

    Article  Google Scholar 

  33. N. Walker and C. J. Beevers:Fat. Eng. Mater. Struct., 1979, vol. 1, p. 135.

    Article  CAS  Google Scholar 

  34. K. Minakawa and A. J. McEvily:Scripta Met., 1981, vol. 15, p. 633.

    Article  Google Scholar 

  35. S. Suresh and R. O. Ritchie:Metall. Trans. A, 1982, vol. 13A, p. 1627.

    Google Scholar 

  36. H. Suzuki and A. J. McEvily:Metall. Trans. A, 1979, vol. 10A, p. 475.

    CAS  Google Scholar 

  37. J. Wasynczuk: M. S. Thesis, University of California, Berkeley, CA, 1982.

    Google Scholar 

  38. V. B. Dutta, S. Suresh, and R. O. Ritchie: unpublished research, University of California, Berkeley, CA, 1983.

  39. A. K. Vasudevan and S. Suresh:Metall. Trans. A, 1982, vol. 13A, p. 2271.

    Google Scholar 

  40. F.-S. Lin and E. A. Starke:Mat. Sci. Eng., 1980, vol. 43, p. 65.

    Article  CAS  Google Scholar 

  41. W. L. Morris, M. R. James, and O. Buck:Metall. Trans. A, 1981, vol. 12A, p. 57.

    Google Scholar 

  42. H. Kitagawa and S. Takahashi: inProc. 2nd Intl. Conf. on Mech. Beh. Mater., M. I. T. Press, Cambridge, MA, 1979, p. 717.

    Google Scholar 

  43. S. J. Hudak, Jr.:J. Eng. Mater. Tech., Trans. ASME, Ser. H, 1981, vol. 103, p. 26.

    CAS  Google Scholar 

  44. N. Dowling: inCracks and Fracture, ASTM STP 601, American Society for Testing and Mateials, Philadelphia, PA, 1976, p. 17.

    Google Scholar 

  45. D. Taylor and J. F. Knott:Fat. Eng. Mater. Struct., 1981, vol. 4, p. 220.

    Google Scholar 

  46. J. Schijve: inFatigue Thresholds, Blomet al., eds., EMAS Ltd., Warley, 1982, vol. 2, p. 881.

    Google Scholar 

  47. S. Suresh and R. O. Ritchie:Int. Met. Rev., in press.

  48. K. Tanaka, Y. Nakai, and M. Yamashita:Int. J. Fract., 1981, vol. 17, p. 519.

    CAS  Google Scholar 

  49. M. H. El-Haddad, K. N. Smith, and T. H. Topper:J. Eng. Mater. Tech., Trans. ASME, Ser. H, 1979, vol. 101, p. 42.

    Google Scholar 

  50. S. Pearson:Eng. Fract. Mech., 1975, vol. 7, p. 235.

    Article  CAS  Google Scholar 

  51. J. C. Newman, Jr.: inBehavior of Short Cracks in Airframe Components, Proc. 55th Specialists Meeting of AGARD Structural and Materials Panel, 1983, in press, Advisory Group for Aeronautical Research and Development, France.

    Google Scholar 

  52. P. J. E. Forsyth: inCrack Propagation, Proc. Symp., Cranfield College of Aeronautics, Cranfield Press, Cranfield, U. K., 1962, p. 76.

    Google Scholar 

  53. H. Ishikawa, H. Kitagawa, and H. Okamura: inProc. ICM3, K. J. Miller and R. F. Smith, eds., Pergamon Press, Oxford, 1979, vol. 3, p. 447.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly with the University of California, Berkeley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suresh, S. Crack deflection: Implications for the growth of long and short fatigue cracks. Metall Trans A 14, 2375–2385 (1983). https://doi.org/10.1007/BF02663313

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02663313

Keywords

Navigation