Skip to main content
Log in

Three-dimensional finite element modeling of gas metal-arc welding

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The modeling of the gas metal-arc (GMA) welding process in three dimensions for moving heat sources has been attempted using the finite element method. The occurrence of finger penetration in the weldment resulting from a streaming type of metal transfer at high contents is explained by assuming that the heat content of transferring droplets is distributed in a certain volume of the workpiece below the arc. Volumetric distribution of the heat content of transferring droplets has been considered as an internal heat-generation term, and the differences between penetration characteristics in two cases of globular and streaming conditions of metal transfer have been analyzed. It is shown that weld penetration depends on the depth at which the droplets distribute their energy inside the workpieces. Temperature dependence of thermophysical properties,i.e., thermal conductivity and specific heat, has been included. Latent heat is incorporated by a direct iteration method. Heat losses from the plate caused by convection and radiation are also considered. The model is validated by predicting the weld-bead dimensions and comparing them with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.A. Wilson:Proc. Camb. Phil. Soc, 1904, vol. 12, pp. 406–23.

    Google Scholar 

  2. D. Rosenthal and R. Schmerber:Weld. J., 1938, vol. 17 (4), pp. 2–8.

    Google Scholar 

  3. D. Rosenthal:Trans. ASME, 1946, vol. 68, pp. 849–66.

    Google Scholar 

  4. C.L. Tsal:Modelling of Casting and Welding Processes 11, Proc. Conf., Henniker, NH, July 31–Aug. 5, 1983, TMS-AIME, Warrendale, PA, 1984, pp. 329–41.

    Google Scholar 

  5. H.W. Ghent, C.E. Hermance, H.W. Kerr, and A.B. Strong: Proc. Int. Conf., London, May 8–10, 1979, W. Lucas, Conf. Tech. Director, Institute of Welding, London, 1980, pp. 389–400.

    Google Scholar 

  6. R.J. Grosh, E.A. Trabart, and G.A. Hawkins:Q. Appl. Math., 1955, vol. 13 (2), pp. 161–66.

    Google Scholar 

  7. Z. Paley and P.D. Hibbert:Weld. J., 1975, vol. 54, pp. 385s-92s.

    Google Scholar 

  8. G.M. Oreper and J. Szekely:J. Fluid Mech., 1984, vol. 147, pp. 53–79.

    Article  Google Scholar 

  9. W.H. Gledt, X.C. Wei, and S.R. Wei:Weld. J., 1984, vol. 63 (12), pp. 376s-83s.

    Google Scholar 

  10. K.C. Tsao and C.S. Wu:Weld. J., 1988, vol. 67 (3), pp. 70s-75s.

    Google Scholar 

  11. E. Friedman:J. Pressure Vessel Technol. Trans. ASME, 1975, vol. 97, pp. 206–13.

    Google Scholar 

  12. J. Goldak, A. Chakravarti, and M. Bibby:Metall. Trans. B, 1984, vol. 15B, pp. 299–305.

    Google Scholar 

  13. S.J. Na and S.Y. Lee:Proc. Inst. Mech. Eng., 1987, vol. 201 (B3), pp. 149–56.

    Google Scholar 

  14. P. Tekriwal, M. Stitt, and J. Mazumder:Met. Constr., 1987, vol. 19 (10), pp. 599R-606R.

    CAS  Google Scholar 

  15. P. Tekriwal and J. Mazumder:Weld. J., 1988, vol. 67 (7), pp. 150s-56s.

    Google Scholar 

  16. T. Zacharia, A.H. Eraslan, and D.K. Aidun:Weld. J., 1988, vol. 67 (1), pp. 18s-27s.

    Google Scholar 

  17. D.N. Shackleton and W. Lucas:Weld. J., 1974, vol. 53(12), pp. 537s-47s.

    Google Scholar 

  18. W.G. Essers and R. Walter:Weld. J., 1981, vol. 60(2), pp. 37s-42s.

    Google Scholar 

  19. The Physics of Welding, J.F. Lancaster, ed., Pergamon Press, New York, NY, 1984, pp. 204–67.

    Google Scholar 

  20. E. Pardo and D.C. Weckman:Metall. Trans., 1989, vol. 20B, pp. 937–47.

    CAS  Google Scholar 

  21. H.S. Carslaw and J.C. Jaeger:Conduction of Heat in Solids, 2nd ed., Oxford University Press, London, 1959.

    Google Scholar 

  22. V. Pavelic, R. Tanbakuchi, O.A. Uyehara, and P.S. Myers:Weld. J., 1969, vol. 48(7), pp. 295s-305s.

    Google Scholar 

  23. S.S. Rao:Finite Element Method in Engineering, Pergamon Press, Oxford, 1982, pp. 418–505.

    Google Scholar 

  24. N. Christensen, V.L. Davies, and K. Gjermundsen:Br. Weld. J., 1965, vol. 12(2), pp. 54–75.

    Google Scholar 

  25. G.W. Tichellar, G. Jelmorini, and G.J.P.M. vander Henvel:Droplet Temperature Measurement in Arc Welding, IIW Document 212-411-77, 1977.

  26. T. Iida and R.I.L. Guthrie:The Physical Properties of Liquid Metals, Clarendon Press, Oxford, United Kingdom, 1988, pp. 109–46.

    Google Scholar 

  27. Physics Division, The National Physical Laboratory:J. Iron Steel Inst., 1946, vol. CLIV(2), pp. 83p-121p.

    Google Scholar 

  28. G.M. Ecer, M. Downs, H.D. Brody, and A. Gokhale:Modelling of Casting and Welding Processes I, A Symp., Henniker, NH, Aug. 3–8, 1980, TMS-AIME, Warrendale, PA, 1981, pp. 139–60.

    Google Scholar 

  29. W.D. Rolph III and Klaus-Jurgen Bathe: Int. J. Numer. MethodsEng., 1982, vol. 18(1), pp. 119–34.

    Google Scholar 

  30. J.C. McGlone:Met. Constr., 1982, vol. 14(7), pp. 378–84.

    Google Scholar 

  31. E. Hinton and D.R.J. Owen:Finite Element Programming, Academic Press, New York, NY, 1977, pp. 170–206.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, S., Bhaduri, S.C. Three-dimensional finite element modeling of gas metal-arc welding. Metall Mater Trans B 25, 435–441 (1994). https://doi.org/10.1007/BF02663394

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02663394

Keywords

Navigation