Skip to main content
Log in

Dynamic compaction of titanium aluminides by explosively generated shock waves: Microstructure and mechanical properties

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

A detailed microstructural analysis and evaluation of the mechanical properties of titanium aluminides consolidated by novel shock processes[13] are presented. Successful consolidation was obtained and was evidenced by strong bonding between individual particles. Additions of Nb and Ti and Al elemental powders resulted in enhanced interparticle bonding through intense plastic deformation of Nb and shock-induced reactions between Ti and Al. Rapid cooling of interparticle molten layers yielded amorphous Ti-Al alloys; this interparticle melting and rapid cooling are a unique feature of shock processing. Embrittlement of individual particles of Ti3Al-based alloy after exposure to 550 °C and 750 °C was observed. There is evidence of phase transformation after preheating the powder, and this fact can explain the high density of cracks obtained with this alloy after high-temperature shock consolidation. Mechanical properties of the Ti3Al-based alloy were determined at room temperature and the fracture modes were studied. The microstructural observations are correlated with the mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Robert E. Schafrik:Metall. Trans. A, 1977, vol. 8A, pp. 1003–06.

    CAS  Google Scholar 

  2. H.A. Lipsitt:High Temperature OrderedIntermetallic Alloys, C.C. Koch, C.T. Liu, and N.S. Stoloff, eds., MRS Symp. Proc, Pittsburgh, PA, 1985, vol. 39, p. 351.

  3. H.A. Lipsitt, D. Shechtman, and R.E. Schafrik:Metall. Trans. A, 1980, vol. 11A, pp. 1369–75.

    CAS  Google Scholar 

  4. D. Shechtman, M.J. Blackburn, and H.A. Lipsitt:Metall. Trans., 1974, vol. 5, pp. 1373–81.

    Article  CAS  Google Scholar 

  5. Harry A. Lipsitt, D. Shechtman, and Robert E. Schafrik:Metall. Trans. A, 1975, vol. 6A, pp. 1991–96.

    CAS  Google Scholar 

  6. P.R. Munroe and I. Baker:Met. Mater., 1988, vol. 4, p. 435.

    CAS  Google Scholar 

  7. P.L. Martin, H.A. Lipsitt, N.T. Nuhfer, and J.C. Williams:Proc. Conf. on Titanium 80: Science and Technology, H. Kimura and O. Izumi, eds., TMS-AIME Publication, Warrendale, PA, 1980, p. 1245.

    Google Scholar 

  8. S.M.L. Sastry and H.A. Lipsitt:Metall. Trans. A, 1977, vol. 8A, pp. 1543–52.

    CAS  Google Scholar 

  9. D.G. Konitzer and H.L. Fraser: inHigh Temperature Ordered Intermetallic Alloys, C.C. Koch, C.T. Liu, and N.S. Stoloff, eds., MRS Symp. Proc, Pittsburgh, PA, 1985, p. 437.

  10. R.G. Rowe, J.A. Sutliff, and E.F. Koch:Proc. Conf. Rapidly Solidified Alloys and Their Mechanical and Magnetic Properties, B.C. Giessen, D.R. Polk, and A.I. Taub, eds., MRS Symp. Proc, Pittsburgh, PA, 1986, p. 359.

  11. K.R. Teal, A.G. Jackson, D. Eylon, and F.H. Froes:Proc. Conf. on Titanium: Rapid Solidification Technology, F.H. Froes and D. Eylon, eds., TMS-AIME Publication, Warrendale, PA, 1986, p. 231.

    Google Scholar 

  12. M.A. Meyers and S.L. Wang:Acta Metall., 1988, vol. 36 (4), p. 925.

    Google Scholar 

  13. A. Ferreira, M.A. Meyers, N.N. Thadhani, S.N. Chang, and J.R. Kough:Metall. Trans. A, 1991, vol. 22A, pp. 685–95.

    CAS  Google Scholar 

  14. D. Banerjee, A.K. Gogia, T.K. Nandy, and V.A. Joshi:Acta Metall., 1988, vol. 36, p. 871.

    Article  CAS  Google Scholar 

  15. R. Strychor, J.C. Williams, and W.A. Soffa:Metall. Trans. A, 1988, vol. 19, pp. 225–34.

    Article  Google Scholar 

  16. M.J. Kaufman, T.F. Broderick, C.H. Ward, J.K. Kim, R.G. Rowe, and F.H. Froes: Washington State University, Seattle, WA, private communication, 1988.

  17. M.A. Meyers, B.B. Gupta, and L.E. Murr:J. Met., 1981, vol. 33, p. 21.

    Google Scholar 

  18. N.N. Thadhani, A. Mutz, P. Kasiraj, and T. Vreeland, Jr.: inMetallurgical Applications of Shock-Wave and High-Strain-Rate Phenomena, L.E. Murr, K.P. Staudhammer, and M.A. Meyers, eds., Marcel Dekker, New York, NY, 1986, p. 247.

    Google Scholar 

  19. S.L. Wang, M.A. Meyers, and A. Szecket:J. Mater. Sci., 1988, vol. 23, pp. 1786–96.

    Article  CAS  Google Scholar 

  20. N.N. Thadhani, A. Mutz, and T. Vreeland, Jr.:Acta Metall., 1989, vol. 37, p. 897.

    Article  CAS  Google Scholar 

  21. C. Politis and W.L. Johnson:J. Appl. Phys., 1986, vol. 60, p. 1147.

    Article  CAS  Google Scholar 

  22. Shi-Shyan Shang and Marc A. Meyers:Metall. Trans. A, 1991, vol. 22A, pp. 2667–76.

    CAS  Google Scholar 

  23. J.N. Goodier:Trans. ASME, 1933, vol. 55, p. 39.

    Google Scholar 

  24. S. Timoshenko:Theory of Elasticity, 1st ed., McGraw-Hill, New York, NY, 1934, p. 326.

    Google Scholar 

  25. L.H. Yu, M.A. Meyers, and N.N. Thadhani:J. Mater. Res. Soc, 1990, vol. 5, p. 302.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferreira, A., Meyers, M.A. & Thadhani, N.N. Dynamic compaction of titanium aluminides by explosively generated shock waves: Microstructure and mechanical properties. Metall Trans A 23, 3251–3261 (1992). https://doi.org/10.1007/BF02663434

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02663434

Keywords

Navigation