Skip to main content
Log in

A mesoscale study on the thermodynamic effect of stress on martensitic transformation

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of stress on martensitic transformation (MT) is addressed with special emphasis on the mechanical driving force (MDF) for triaxial stress states. The mechanical driving force appears to be additional to the chemical driving force in thermodynamic transformation con-ditions derived from a Gibbs free energy formulation for stressed solids undergoing MT. The thermodynamic criterion of Patel and Cohen predicts the change in martensite start temperature if MT occurs in a stress field. This criterion is extended from uniaxial to triaxial stress states and is discussed in the light of emerging microstresses. As a source of microstress, the elastic anisotropy of single crystals is taken into account. Its influence on the martensite start temper-ature is investigated by mesomechanical finite-element modeling. The critical stress for the start of transformation occurring in a stress field is calculated from a transformation condition and compared with results based on statistical theories for stress-assisted nucleation. In the context of martensitic transformation and mechanical effects, the MDF accounts for the Magee effect. The range of temperature for which the Magee effect has an influence on the macroscopic deformation behavior of a specimen is determined in dependence of the level of uniaxial applied stress. Finally, a constitutive equation in incremental form for transformation-induced plasticity (TRIP) derived within the continuum-thermodynamics framework is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.I. Baskes, R.G. Hoagland, and A. Needleman:Mater. Sci. Eng., 1992, vol. A159, pp. 1–34.

    Google Scholar 

  2. G.B. Olson, K. Tsuzaki, and M. Cohen: inPhase Transitions in Condensed Systems, Materials Research Society Symposia Proceedings, G. Carhill, F. Spaepen, and K.N. Tu, eds., 1987, pp. 129–48.

  3. G.B. Olson and M. Cohen:Metall. Trans. A, Materials Research Society, Pittsburgh, PA, 1982, vol. 13A, pp. 1907–14.

    Google Scholar 

  4. G.B. Olson: inDeformation, Processing and Structure, G. Krauss, ed., ASM, Metals Park, OH, 1984, pp. 391–424.

    Google Scholar 

  5. CM. Wayman:Prog. Mater. Sci., 1992, vol. 36, pp. 203–24.

    Article  CAS  Google Scholar 

  6. E. Gautier, X.M. Zhang, and A. Simon:Proc. 2nd Int. Conf. Residual Stresses ICRS2, G. Beck, S. Denis, and A. Simon, eds., Elsevier, London, 1989, pp. 777–83.

  7. E. Gautier and A. Simon: inPhase Transformations ’87, G.W. Lorimer, ed., Institute of Metals, London, 1988, pp. 285–87.

    Google Scholar 

  8. X.M. Zhang, E. Gautier, and A. Simon:Acta. Metall., 1989, vol. 37, pp. 477–85.

    Article  CAS  Google Scholar 

  9. J.F. Ganghoffer, S. Denis, E. Gautier, A. Simon, K. Simonsson, and S. Sjöström:J. Phys. IV, Colloque C4, Suppl. J. Phys. Ill, 1992, vol. 1, pp. 77–82.

    Google Scholar 

  10. F. Marketz and F.D. Fischer:Mod. Sim. Mater. Sci. Eng., 1994, vol. 5, in press.

  11. F.D. Fischer, M. Berveiller, K. Tanaka, and E.R. Oberaigner:Arch. Appl. Mech., 1994; vol. 64, pp. 54–85.

    Google Scholar 

  12. JR. Patel and M. Cohen:Acta Metall., 1953, vol. 1, pp. 531–38.

    Article  CAS  Google Scholar 

  13. M.S. Wechsler, D.S. Lieberman, and T.A. Read:J. Met. Trans. AIME, 1953, vol. 197, pp. 1503–15.

    Google Scholar 

  14. Z. Nishiyama:Martensitic Transformations, Academic Press, New York, NY, 1971.

    Google Scholar 

  15. H. Okamoto, M. Oka, and I. Tamura:Trans. Jpn. Inst. Met., 1978, vol. 19, pp. 674–84.

    CAS  Google Scholar 

  16. A.L. Roytburd:Sov. Phys. Izves., 1983, vol. 47, pp. 435–49.

    Google Scholar 

  17. HJ. Bunge: inQuantitative Texture Analysis, H.J. Bunge and C. Esling, eds., Deutsche Gesellschaft für Materialkunde, Oberursel, Germany, 1982, pp. 383–407.

    Google Scholar 

  18. H. Horikawa, S. Ichinose, K. Morii, S. Miyazaki, and K. Otsuka:Metall. Trans. A, 1988, vol. 19A, pp. 915–23.

    CAS  Google Scholar 

  19. L. Kaufman and M. Cohen: inProgress in Metal Physics, B. Chalmers and R. King, eds., Pergamon, London, 1958, vol. 7, pp. 165–246.

  20. J.R. Rice:J. Mech. Phys. Solids, 1971, vol. 19, pp. 433–55.

    Article  Google Scholar 

  21. A.L. Roytburd: inSolid State Physics, H. Ehrenreich, F. Seitz, and D. Tumbull, eds., Academic Press, New York, NY, 1978, vol. 33, pp. 317–90.

    Google Scholar 

  22. F. Marketz, and F.D. Fischer:Mécamat 93 International Seminar on Micromechanics of Materials, Editions Eyrolles, Paris, 1993, pp. 258–69.

    Google Scholar 

  23. C. Truesdell:The Elements of Continuum Mechanics, Springer-Verlag, New York, NY, 1985, pp. 273–78.

    Google Scholar 

  24. V. Levitas: IBNM-Report P2/5, Institute for Structural and Computational Mechanics (IBNM), University of Hannover, Hannover, Germany, 1992.

  25. R. de Boer:Vektor- und Tensorrechnung für Ingenieure, Springer- Verlag, Berlin, 1982.

  26. F.D. Fischer:Eur. J. Mech. A/Solids, 1993, vol. 11, pp. 233–44.

    Google Scholar 

  27. ABAQUS Version 5.2., Theory Manual, Hibbit, Karlsson & Sorensen, Providence, RI, 1993.

  28. Metals Reference Book, C.J. Smitheis and E.A. Brandes, eds., Butterworth and Co., London, 1976, pp. 976–79.

  29. R.G. Stringfellow, D.M. Parks, and G.B. Olson:Acta Metall. Mater., 1992, vol. 40, pp. 1703–16.

    Article  CAS  Google Scholar 

  30. J.B. Leblond, J. Devaux, and J.C. Devaux:Int. J. Plasticity, 1989, vol. 5, pp. 551–72.

    Article  CAS  Google Scholar 

  31. T. Inoue, Z.-G. Wang, and K. Miyao:Proc. 2nd Int. Conf. Residual Stresses ICRS2, G. Beck, S. Denis, and A. Simon, eds., Elsevier, London, 1989, pp. 606–11.

  32. Q.P. Sun and K.C. Hwang:J. Mech. Phys. Solids, 1993, vol. 41, pp. 1–17.

    Article  CAS  Google Scholar 

  33. Q.P. Sun: Tsinghua University, Beijing, private communication, Oct. 1993.

  34. C.L. Magee:Phase Transformation, H.I. Aaronson, ed., ASM, Metals Park, OH, 1968, 115–56.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marketz, F., Fischer, F.D. A mesoscale study on the thermodynamic effect of stress on martensitic transformation. Metall Mater Trans A 26, 267–278 (1995). https://doi.org/10.1007/BF02664665

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02664665

Keywords

Navigation