Skip to main content
Log in

Statistical aspects of cleavage fracture in steel

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The fracture of mild steel in the cleavage range has been evaluated using a weakest link statistical model, assuming the preexistence of a distribution of cracked carbides. The model provides a rationale for the critical fracture distance, viz., the distance from the crack tip at which the probability of cleavage cracking exhibits a maximum. The critical distance depends on the size distribution and volume fraction of carbides. The model also predicts trends in K,ic with material properties: flow strength, cracked carbide size and volume fraction, and grain size. The resultant temperature dependence of K,ic is shown to derive exclusively from the temperature dependence of the flow stress, as in prior models. The effects of microstructure on K,ic depend primarily on the size distribution of cracked carbides, with additional influences of the grain size and of the volume fraction of carbides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. O. Ritchie, J. F. Knott, and J. R. Rice:J. Mech. Phys. Sol., 1973, vol. 21, p. 395.

    Article  CAS  Google Scholar 

  2. D.A. Curry and J.F. Knott:Metal Science, 1978, vol. 12, p. 511.

    Article  CAS  Google Scholar 

  3. D. M. Parks:Jnl. Eng. Mtls. Technology, Trans. ASME, Ser. H, 1976, vol. 98, p. 30.

    CAS  Google Scholar 

  4. S. P. Rawal and J. Gurland:Metall. Trans. A, 1977, vol. 8A, p. 691.

    CAS  Google Scholar 

  5. D.A. Curry and J.F. Knott:Metal Science, 1976, vol. 10, p. 1.

    Article  CAS  Google Scholar 

  6. R. O. Ritchie, W. L. Server, and R. A. Wullaert:Metall. Trans. A, 1979, vol. 10A, p. 1557.

    CAS  Google Scholar 

  7. D.A. Curry and J.F. Knott:Metal Science, 1979, vol. 13, p. 341.

    CAS  Google Scholar 

  8. D. A. Curry:Metal Science, 1980, vol. 14, p. 319.

    Article  CAS  Google Scholar 

  9. A. Pineau:Advances in Fracture Research, D. Francois, ed.,Pergamon, New York, NY, 1981, vol. 2, p.553.

    Google Scholar 

  10. E. Smith:Physical Basis of Yield and Fracture, Inst. Phys./Phys. Sci.,Oxford, 1966, p. 36.

    Google Scholar 

  11. J. D. G. Groom and J. F. Knott:Metal Science, 1975, vol. 9, p. 390.

    Article  Google Scholar 

  12. M. Holtzman and J. Man:Jnl. Iron and Steel Institute, October 1971, p. 836.

  13. J. R. Matthews, W. Shack, and F. A. McClintock:Jnl. Amer. Ceram. Soc, 1976, vol. 59, p. 304.

    Article  Google Scholar 

  14. A. G. Evans and R. L. Jones:Jnl. Amer. Ceram. Soc, 1978, vol. 61, p. 156.

    Article  CAS  Google Scholar 

  15. J.W. Hutchinson:J. Mech. Phys. Solids, 1968, vol. 16, p. 1.

    Article  Google Scholar 

  16. J. R. Rice and G. F. Rosengren:J. Mech. Phys. Solids, 1968, vol. 16, p. 1.

    Article  Google Scholar 

  17. J. W. Hutchinson:Acta Met., in press.

  18. G.T. Hahn, R.B. Hoagland, and A. R. Rosenfield:Metall. Trans., 1971, vol. 2, p. 537.

    Article  Google Scholar 

  19. A.R. Rosenfield and D. K. Shetty: Battelle Research Labs, Columbus, OH, unpublished research, 1983.

  20. R. O. Ritchie: Ph.D. Thesis, Cambridge Univ., 1972.

  21. J. R. Rice and E. P. Sorensen:Jnl. Mech. Phys. Solids, 1978, vol. 26, p. 163.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evans, A.G. Statistical aspects of cleavage fracture in steel. Metall Trans A 14, 1349–1355 (1983). https://doi.org/10.1007/BF02664818

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02664818

Keywords

Navigation