Skip to main content
Log in

A critical evaluation of the stress-corrosion cracking mechanism in high-strength aluminum alloys

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Attempts have been made to elucidate the mechanism of stress-corrosion cracking (SCC) in high-strength Al-Zn-Mg and Al-Li-Zr alloys exposed to aqueous environments by considering the temperature dependence of SCC susceptibility based upon the anodic dissolution and hydrogen embrittlement models. A quantitative correlation which involves the change of threshold stress intensity,K ISCC, with temperature on the basis of anodic dissolution has been developed with the aid of linear elastic fracture mechanics. From the derived correlation, it is concluded that the threshold stress intensity decreases as the test temperature increases. This suggestion is inconsistent with that predicted on the basis of hydrogen embrittlement. It is experimentally observed from the Al-Zn-Mg and Al-Li-Zr alloys that the threshold stress intensity,K,ISCC, decreases and the crack propagation rate,da/dt, over the stress intensity increases with increasing test temperature. From considering the change in SCC susceptibility with temperature, it is suggested that a gradual transition in the mechanism for the stress-corrosion crack propagation occurs from anodic dissolution in stage I, where the crack propagation rate increases sharply with stress intensity, to hydrogen embrittlement in stage II, where the crack propagation rate is independent of stress intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.H. Dix:Trans. ASM, 1950, vol. 42, pp. 1057–1142.

    CAS  Google Scholar 

  2. G. Thomas and J. Nutting:J. Inst. Met., 1959-60, vol. 88, pp. 81–90.

    Google Scholar 

  3. W. Gruhl:Z. Metallkd., 1962, vol. 53, pp. 670–78.

    Google Scholar 

  4. H.A. Holl:Corrosion, 1967, vol. 23, pp. 173–80.

    CAS  Google Scholar 

  5. A.J. Sedriks, P.W. Slattery, and E.N. Pugh:Trans. ASM, 1969, vol. 62, pp. 238–43.

    CAS  Google Scholar 

  6. A.J. D. Ardo, Jr. and R.D. Townsend:Metall. Trans., 1970, vol. 1, pp. 2573–81.

    Google Scholar 

  7. M. Landkof and L. Galor:Corrosion, 1980, vol. 36, pp. 241–46.

    CAS  Google Scholar 

  8. M.O. Speidel and M.V. Hyatt:Advances in Corrosion Science and Technology, M.G. Fontana and R.W. Staehle, eds., Plenum Press, New York, NY, 1972, vol. 2, pp. 115–335.

    Google Scholar 

  9. J.A.S. Green and H.W. Hayden:Hydrogen in Metal, I.M. Bernstein and A.W. Thompson, eds., ASM, Metals Park, OH, 1974, pp. 235–44.

    Google Scholar 

  10. R.J. Gest and A.R. Troiano:Corrosion, 1974, vol. 30, pp. 274–79.

    CAS  Google Scholar 

  11. M.O. Speidel:Metall. Trans. A, 1975, vol. 6A, pp. 631–50.

    CAS  Google Scholar 

  12. R.S. Pathania and D. Tromans:Metall. Trans. A, 1981, vol. 12A, pp. 607–12.

    Google Scholar 

  13. H.P. Kim and S.I. Pyun:Br. Corros. J., 1984, vol. 19, pp. 192–95.

    Google Scholar 

  14. H.P. Kim and S.I. Pyun:J. Korean Inst. Met., 1984, vol. 22, pp. 621–31.

    CAS  Google Scholar 

  15. S.I. Pyun:Metall, 1984, vol. 38, pp. 229–31.

    CAS  Google Scholar 

  16. S.I. Pyun, T.S. Suh, and H.P. Kim:Werkst. Korros., 1987, vol. 38, pp. 129–34.

    Article  CAS  Google Scholar 

  17. H.P. Kim, R.H. Song, and S.I. Pyun:Br. Corros. J., 1988, vol. 23, pp. 254–58.

    CAS  Google Scholar 

  18. H.P. Kim: Ph.D. Thesis, Korea Advanced Institute of Science and Technology, Seoul, Korea, 1988.

    Google Scholar 

  19. G.M. Seamans, R. Alani, and P.R. Swann:Corros. Sci., 1976, vol. 16, pp. 443–59.

    Article  Google Scholar 

  20. H. Kaesche:Localized Corrosion, R.W. Staehle, B.F. Brown, J. Kruger, and A. Agrawal, eds., NACE, Williamsburg, VA, 1974, pp. 516–25.

    Google Scholar 

  21. B.P. Caldwell and V.J. Albano:Trans. Electrochem. Soc, 1939, vol. 76, pp. 271–72.

    Google Scholar 

  22. D.P. Williams and H.G. Nelson:Metall. Trans., 1970, vol. 1, pp. 63–68.

    CAS  Google Scholar 

  23. R.P. Gangloff and R.P. Wei:Metall. Trans. A, 1977, vol. 8A, pp. 1043–53.

    CAS  Google Scholar 

  24. G.W. Simmons, P.S. Pao, and R.P. Wei:Metall. Trans. A, 1978, vol. 9A, pp. 1147–58.

    CAS  Google Scholar 

  25. M. Gao, M. Lu, and R.P. Wei:Metall. Trans. A, 1984, vol. 15A, pp. 735–46.

    CAS  Google Scholar 

  26. W.W. Gerberich, T. Livne, X.F. Chen, and M. Kaczorowski:Metall. Trans. A, 1988, vol. 19A, pp. 1319–34.

    CAS  Google Scholar 

  27. S.I. Pyun and H.G. Lie:Steel Res., 1990, vol. 61, pp. 419–25.

    CAS  Google Scholar 

  28. J. Albrecht, A.W. Thompson, and I.M. Bernstein:Metall. Trans. A, 1979, vol. 10A, pp. 1759–66.

    CAS  Google Scholar 

  29. S.M. Lee and S.I. Pyun:J. Mater. Sci. Lett., 1990, vol. 9, pp. 1247–50.

    Article  CAS  Google Scholar 

  30. R.N. Parkins:Corrosion, 1987, vol. 43, pp. 130–39.

    CAS  Google Scholar 

  31. R.O. Ritchie and A.W. Thompson:Metall. Trans. A, 1985, vol. 16A, pp. 233–48.

    CAS  Google Scholar 

  32. A.S. Tetelman and A.J. McEvily, Jr.:Fracture of Structural Materials, John Wiley & Sons, New York, NY, 1967, pp. 61–62.

    Google Scholar 

  33. J.-K. Choi and S.I. Pyun:J. Mater. Sci., 1990, vol. 25, pp. 246–52.

    Article  CAS  Google Scholar 

  34. R.A. Oriani and P.H. Josephic:Acta Metall., 1974, vol. 22, pp. 1065–74.

    Article  CAS  Google Scholar 

  35. R.A. Oriani:Bunsen-Gesellshaft Phys. Chem., 1972, vol. 76, pp. 848–57.

    CAS  Google Scholar 

  36. W.W. Gerberich and Y.T. Chen:Metall. Trans. A, 1975, vol. 6A, pp. 271–78.

    CAS  Google Scholar 

  37. L. Christodoulou, L. Struble, and J.R. Pickens:Aluminum-Lithium Alloys II, E.A. Starke, Jr. and T.H. Sanders, Jr., eds., AIME, New York, NY, 1984, pp. 561–79.

    Google Scholar 

  38. B.F. Brown, C.J. Fujii, and E.P. Dahlberg:J. Electrochem. Soc, 1971, vol. 116, pp. 218–19.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, SM., Pyun, SI. & Chun, YG. A critical evaluation of the stress-corrosion cracking mechanism in high-strength aluminum alloys. Metall Trans A 22, 2407–2414 (1991). https://doi.org/10.1007/BF02665007

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02665007

Keywords

Navigation