Skip to main content
Log in

Thermodynamic modeling of the Al-Ta system

  • Published:
Journal of Phase Equilibria

Abstract

Consistent sets of thermodynamic functions for the Al-Ta system are obtained by a computer-operated least squares method applied to all of the experimental phase diagram and thermodynamic data from the literature. Special attention is paid to the σ phase, AlTa2, which is described by a sublattice model, (Al,Ta)10Ta4(Ta,Al)16, in a final treatment. The other phases are modeled with the Redlich-Kister formula [liquid, fcc (Al), and bcc (Ta)] or as stoichiometric compounds (Al3Ta, Al69Ta39, Al3Ta2, Al7Ta5, and AlTa).

Four treatments are performed. In the first and second treatments, which differ by whether or not the experimental partial Gibbs energy data of Al in bcc (Ta) are used, AlTa2 is assumed to be a stoichiometric compound; in the third and final ones, it is described by sublattice models (Al,Ta)1Ta2 and (Al,Ta)10Ta4(Ta,Al)16, respectively. Data on the partial Gibbs energy of Al in bcc (Ta) are not consistent with solid solubility data of Al in bcc (Ta). In the second, third, and final treatments, this step-by-step modeling procedure provides reliable estimates and useful starting values for the parameters at each of the higher levels. In addition, the complete and consistent thermodynamic functions of the second or third treatments may be useful for a simplified description of the Al-Ta system if less accuracy for the σ phase is required. A comparison with other σ phase descriptions in the literature suggests some benefits of the model used in the final treatment. It covers a broad composition range. It is supported by the crystal structure, and it uses a small number of adjustable parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Cited References

  1. G. Brauer, “Crystal Structures of the Intermetallic Compounds of Al with Ti, Zr, Th, Nb, and Ta,”Naturwissenschaften, 26, 710 (1938) in German.

    Article  ADS  Google Scholar 

  2. G. Brauer, “About the Crystallographic Data of TiAl3, NbA3, TaAl3, and ZrAl3,” Z.Anorg. Allg. Chem., 242(1), 1–22 (1939) in German.

    Google Scholar 

  3. O. Redlich and A.T. Kister, “The Algebraic Representation of Thermodynamic Properties and the Classification of Solutions,”Ind. Eng. Chem., 40,345–348 (1948).

    Article  Google Scholar 

  4. C. Wagner,Thermodynamics of Alloys, Addison-Wesley Press Inc., Cambridge, MA (1952).

    Google Scholar 

  5. V.M. Glazov, M. V. Mal’tsev, and Y.D. Chistyakov, “Aluminum- Tantalum Equilibrium Diagram,”Izv. Akad. NaukSSSR, Otdel. Tekh. Nauk,4,131–136(1956)in Russian.

    Google Scholar 

  6. V.M. Glazov, G.P. Lazarev, and G.A. Korol’kov, “The Solubility of Some Transition Metals in Aluminum,”Metalloved. Term. Obrab. Met, 10,48–50 (1959) inRussian.

    Google Scholar 

  7. L.E. Edshammar and B. Holmberg, “The Sigma Phase Ta2Al,”ActaChem. Scand., 14(5), 1219–1220(1960).

    Article  Google Scholar 

  8. K.P. Gupta, “Sigma Phases with Aluminum,”Trans. AIME, 227(10), 1047–1049(1961).

    Google Scholar 

  9. H. Nowotny, C. Brukl, and F. Benesovsky, “Investigation about the Ta-Al-Si and W-Al-Si Systems,”Mh. Chem., 92(1), 116–127 (1961) in German.

    Google Scholar 

  10. H.A. Wilhelm and J.H. Witte, “Aluminum-Tantalum Alloy Stud- ies,” Report No. IS-500, M48 U.S. Atomic Energy Commission (1962).

  11. K. Schubert, H.G. Meissner, A. Raman, and W. Rossteutscher, “Crystallographic Data for Some Metallic Phases,”Naturwissen- schaften, 51(12), 287 (1964) in German.

    Article  ADS  Google Scholar 

  12. A. Raman, “About the Tantalum-Aluminum System,”Alu- minium, 41 (5), 318–319 (1965) in German.

    Google Scholar 

  13. W.W. Beaver, A.J. Stonehouse, and R.M. Paine, “Development of Intermetallic Compounds for Aerospace Applications,”Plansee Proceedings, Metalwerk Plansee AG, Reutte/Tyrol, Austria, 682–699 (1965).

    Google Scholar 

  14. R.H. Willens and E. Buehler, “Rapid Quenching of Reactive and Refractory Alloys from the Liquid State,”Trans. AIME, 236(2), 171–174(1966).

    Google Scholar 

  15. P. Kofstad and S. Espevik, “Oxidation of Tantalum Coated with Aluminum and Aluminum-Chromium Alloys,”J. Less-Common Met., 12(2), 117–138(1967).

    Article  Google Scholar 

  16. A. Neckel and H. Nowotny, “The Thermochemistry of Alu- minides,”5th Internationale Leichmetalltang, 95, 72–76 (1969) in German.

    Google Scholar 

  17. K. Girgis and A.B. Harnik, “ANew Phase Ta2Al3,”Naturwissen- schaften, 57(5),242(1970).

    Article  ADS  Google Scholar 

  18. M. Hillert and L.I. Staffansson, “Regular Solution Model for Stoichiometric Phases and Ionic Melts,”Acta Chem. Scand., 24, 3618–3626(1970).

    Article  Google Scholar 

  19. H. Kimura, O. Nakano, and T. Ohkoshi, “Aluminum-Tantalum System,”Keikinzoku, 23(3), 106–112(1973)inJapanese.

    Google Scholar 

  20. A. Schauer, M. Roschy, and W. Juergens, “Dielectric Properties of Anodized Aluminum-Tantalum Alloy Films with High AluminumContent,” Thin Solid Films, 27,(1), 111–121 (1975).

    Article  ADS  Google Scholar 

  21. P.W. Brown and F. J. Worzala, “Resistivity and Lattice Parameter Variations in Nd2Al Type Sigma Phases,”J. Mater. Sci., 77(4), 760–766(1976).

    Article  ADS  Google Scholar 

  22. V.N. Yeremenko, Y V. Natanzon, and V.I. Dybkov, “Interaction of the Refractory Metals with Liquid Aluminum,”J. Less-Common Met., 50,29–48(1976).

    Article  Google Scholar 

  23. C.G. Wilson and F.J. Spooner, “Order in NbAl and TaAl Type σ Phases,”J. Mater. Sci., 12,1653–1658(1977).

    Article  ADS  Google Scholar 

  24. S.P. Yatsenko and M.P. Skachkov, “The Solubility of Tantalum in Liquid Aluminium,”Th. Fiz. Khim., 51(5), 1274 (1977) in Russian; TR:Russ.J. Phys. Chem., 51(5),755 (1977).

    Google Scholar 

  25. G.I. Nikolaev and N. V. Bodrov, “Study by Atomic Absorption of the Evaporation of Aluminium Impurities from Tantalum and Nio- bium,”Th. Fiz. Khim., 52, 1430–1433 (1978) in Russian; TR:Russ. J. Phys. Chem., 52(6), 821–822 (1978).

    Google Scholar 

  26. O. Kubaschewski, “An Empirical Estimation of the Henrian Constants of Dilute Metallic Solutions,”High Temp.—High Press., 75,435–440(1981).

    Google Scholar 

  27. B. Sundman and J. Agren, “A Regular Solution Model for Phases with Several Components and Sublattices, Suitable for Computer Applications,”J. Phys. Chem. Solids, 42(4), 297–301 (1981).

    Article  ADS  Google Scholar 

  28. A.F. Guillermet, “An Assessment of the Fe-Mo System,”Cal- phad, 6(2), 127–140(1982).

    Google Scholar 

  29. J.-O. Andersson, “A Thermodynamic Evaluation of the Fe-V System,”Calphad, 7(4),305–315(1983).

    Article  MathSciNet  Google Scholar 

  30. J.C. Schuster, “Phases and Phase Relations in the System Tanta- lum-Aluminum,”Z. Metallkd. 76(11),724–726(1985).

    Google Scholar 

  31. B. Sundman, B. Jansson, and J.-O. Andersson, “The THERMO-CALC Databank System,”Calphad, 9(2), 153–190 (1985).

    Article  Google Scholar 

  32. S.R. Schmidt and H.F. Franzen, “Enthalpies of Formation in the Tantalum-Sulfur and Tantalum-Aluminum Systems,”J. Less-Com- mon Met., 776(1), 73–82(1986).

    Article  Google Scholar 

  33. J.-O. Andersson and B. Sundman, “Thermodynamic Properties of the Cr-Fe System,”Calphad, 11 (1), 83–92(1987).

    Article  Google Scholar 

  34. S. Singh, S. Lele, and C. Suryanarayana, “Microstructural Char- acterization of Rapidly Solidified Al-Ta Alloys,”Metall. Trans. A, 78(11), 1915–1922(1987).

    Article  Google Scholar 

  35. V.S. Sudavtsova and G.I. Batalin, “Enthalpies of Formation of Liquid Alloys of the Aluminum-(Tantalum, Tungsten) Systems,”Ukr. Khim. Zh., 55(2), 144–145 (1989) in Russian.

    Google Scholar 

  36. PR. Subramanian, D.B. Miracle, and S. Mazdiyasni, “Phase Re- lationships in the Al-Ta System,”Metall. Trans. A, 27(3), 539–545 (1990).

    Article  Google Scholar 

  37. C.A. Coughanowr, I. Ansara, R. Luoma, M. Hamalainen, and H.L. Lukas, “Assessment of the Cu-Mg System,”Z Metallkd., 82(7), 574–581 (1991).

    Google Scholar 

  38. A.T. Dinsdale, “SGTE DATA for Pure Elements,”Calphad, 75(4), 317–425 (1991).

    Article  Google Scholar 

  39. W.M. Huang, “A Thermodynamic Analysis of the Mn-V andFe- Mn-V Systems,”Calphad, 75(2), 195–208(1991).

    Article  Google Scholar 

  40. L. Kaufman, “Coupled Thermochemical and Phase Diagram Data for Tantalum Based Binary Alloys,”Calphad, 75(3), 243–259 (1991).

    Article  Google Scholar 

  41. P. Villars and L.D. Calvert,Pearson’s Handbook of Crystal- lographic Data for Intermetallic Phases, ASM International, Materi- als Park, OH 44073 (1991).

    Google Scholar 

  42. M.S. El-Eskandarany, K. Aoki, and K. Suzuki, “Calorimetric and Morphological Studies of Mechanically Alloyed Al-50 at% Transi- tion Metal Prepared by the Rod-Milling Technique,”J. Appl. Phys., 72(7), 2665–2672 (1992).

    Article  Google Scholar 

  43. S. Jiang, J. Zou, D.J.H. Cockayne, A. Sikorski, A. Hu, and R.W. Peng, “An Electron Diffraction and Microscopy Investigation of Quasi-Periodic Ta-Al Superlattices,”Philos. Mag.B, 66(2), 229–237 (1992).

    Article  ADS  Google Scholar 

  44. V.N. Kot’kin, S.N. Nesterenko, and L.I. Meshkov, “The Al-Hf- Ta Phase Diagram,”Vestn. Most Univ., Ser. 2: Khim., 33(2), 188–189 (1992)in Russian.

    Google Scholar 

  45. M.L. Weaver and M.J. Kaufman, “An Investigation of Al2Ta and Related Phases in the Ternary Al-Ta-Ti System,”Scr. Metall. Ma- ter.,26(3)411–416 (1992).

    Article  Google Scholar 

  46. “SGTE Solution Database 1992,” Royal Institute of Technol- ogy, Sweden (1992).

  47. J.G. Costa Neto, S.G. Fries, H.L. Lukas, S. Gama, and G. Effen- berg, “Thermodynamic Optimization of the Nb-Cr System,”Cal- phad, 17(3),219–228 (1993).

    Google Scholar 

  48. S. Mahne, F. Krumeich, and B. Harbrecht, “Phase Relations in the Aluminum-Tantalum System: on the Translational Symme- tries of Al3Ta2 and AlTa,”J. Alloy. Compd., 207(1-2), 167–174 (1993).

    Article  Google Scholar 

  49. S.V. Meschel and O.J. Kleppa, “Standard Enthalpies of Forma- tion of 5d Aluminides by High-Temperature Direct Synthesis Cal- orimetry,”.J. Alloy. Compd., 1797(1), 75–81 (1993).

    Article  Google Scholar 

  50. S. Mahne and B. Harbrecht, “Al69Ta39 - a New Variant of a Face-Centered Cubic Giant Cell Structure,”J. Alloy. Compd, 203(1- 2),271–279(1994).

    Article  Google Scholar 

  51. S. Mahne, B. Harbrecht and F. Krumeich, “Phase Relations in the Al-Ta System: on the Translational Symmetries of a Triclinic Structure and a New Hexagonal Giant Cell Structure,”J. Alloy. Compd., 218(2), 177–182(1995).

    Article  Google Scholar 

  52. D.B. Miracle, F. Scheltens, and P.R. Subramanian, “Crystal Structure Determination of Al2Ta,”Philos. Mag. B, 77(5), 941–953 (1995).

    Article  ADS  Google Scholar 

  53. B. Harbrecht, “Solution Range of the σ-AlTa2 Phase,” Internal Report, University of Bonn, Germany (1996).

  54. M. Palm, W. Sanders, and G. Sauthoff, “Phase Equilibria in the Ni-Al-TaSystem,”Z Metallkd., 87(5), 390–398 (1990).

    Google Scholar 

  55. J.C.Schuster, Melting Point of Al3Ta, private communication (1996).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, Y., Schmid-Fetzer, R. Thermodynamic modeling of the Al-Ta system. JPE 17, 311–324 (1996). https://doi.org/10.1007/BF02665557

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02665557

Keywords

Navigation