Skip to main content
Log in

Vacuum deposited epitaxial layers of PbSl−xSex for laser devices

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This paper describes an epitaxial vacuum deposition system used to grow heterostructure PbSl−xSex diode lasers that operated cw at 12K with threshold current densities as low as 60A/cm3. The relatively low temperature (300°C) growth process, which simulates closed tube vapor phase growth, minimizes substrate-epilayer strain and vacancy interdiffusion. Laser devices were fabricated by sequential evaporation of n-type and p-type PbSl−xSex layers onto PbSl−ySey substrates. n-type grown layers were sometimes found to have Pb-rich droplets on their surfaces, and a correlation has been made between the presence of these droplets and the starting source material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. J. Strauss and T. C. Harman, “Pseudobinary Phase Diagram and Existence Regions for PbSl-xSex,” Journal of Electronic Materials, Vol. 1, 1973, pp. 71–85.

    Google Scholar 

  2. K. W. Nill, F. A. Blum, A. R. Calawa and T. C. Harman, “Infrared Spectroscopy of CO Using a Tunable PbSSe Diode Laser,” Applied Physics Letters, Vol. 19, 1971, pp. 79–82.

    Article  CAS  Google Scholar 

  3. R. W. Ralston, J. N. Walpole, A. R. Calawa, T. C. Harman and J. P. McVittie, “High CW Output Power in Stripe-Geometry PbS Diode Lasers,” Journal of Applied Physics, Vol. 45, 1974, pp. 1323–1325.

    Article  CAS  Google Scholar 

  4. H. Prier and W. Riedel, “NO Spectroscopy by Pulsed PbSl-x Sex Diode Lasers,” Journal of Applied Physics, Vol. 45, 1974, pp. 3955–3958.

    Article  Google Scholar 

  5. S. P. Chaschin, N. S. Baryshev, I. S. Averyanov and N. P. Markina, “Properties of PbSe Laser Diodes at 77K,” Soviet Physics-Semiconductors, Vol. 4, 1970, pp. 989–990.

    Google Scholar 

  6. I, Chambouleyron, J. M. Besson, M. Balkanski, H. Rodot and H. Abrales, “Effect of Temperature on Radiative Emission of PbSe Diode Lasers,”IX International Conference on the Physics of Semiconductors, Moscow, 1968, pp. 546-550.

  7. K. J. Sleger, G. F. McLane and D. L. Mitchell, “Calculation of the Optical Confinement in PbSl-xSex Double Heterojunction Laser,” Journal of Nonmetals, Vol. 1, 1973, pp. 297–309.

    Google Scholar 

  8. K. J. Sleger, G. F. McLane and D. L. Mitchell, “Performance Potential of PbSl-xSex and Pbl-xSnxTe Double Heterostructure Lasers,” International Conference on the Physics of Semimetals and Narrow Gap Semiconductors, Nice, 1973.

  9. H. Kressel, “Semiconductor Lasers,”Lasers, Vol. 3, (Marcel Dekker, New York, 1971) pp. 1–110.

    Google Scholar 

  10. K. J. Sleger, G. F. McLane, U. Strom, S. G. Bishop and D. L. Mitchell, “Single-heterostructure PbSl-xSex Diode Lasers,” Journal of Applied Physics, Vol. 45, 1974, pp. 5069–5071; K. J. Sleger, G. F. McLane and U. Strom, “PbSl-xSex Single and Double Heterostructure Diode Lasers,” IEDM Technical Digest, 1974, pp. 95-98.

    Article  CAS  Google Scholar 

  11. K. Duh, AEG-Telefunken, Frankfurt (private communication).

  12. J. N. Walpole, A. R. Calawa, R. W. Ralston, T. C. Harman and J. P. McVittie, “Single Heterojunction Pbl-xSnxTe Diode Lasers,” Applied Physics Letters, Vol. 23, 1973, pp. 620–622.

    Article  CAS  Google Scholar 

  13. L. R. Tomasetta and C. G. Fonstad, “Threshold Reduction in Pbl-xSnxTe Laser Diodes Through the use of Double Heterojunction Geometries,” Applied Physics Letters, Vol. 25, 1974, pp. 440–442.

    Article  CAS  Google Scholar 

  14. S. H. Groves, K. W. Nill and A. J. Strauss, “Double Heterostructure Pbl-xSnxTe-PbTe Lasers with CW operation at 77K,” Applied Physics Letters, Vol. 25, 1974, pp. 331–333.

    Article  CAS  Google Scholar 

  15. M. G. Craford, W. O. Groves and M. J. Fox, “GaAs-GaAsP Heterostructure Injection Lasers,” Journal of the Electrochemical Society, Vol. 118, 1971, pp. 355–358.

    Article  CAS  Google Scholar 

  16. Obtained from Harshaw Chemical Co., Solon, Ohio.

  17. Obtained from United Mineral and Chemical Corp., New York, New York.

  18. G. A. Ferrante, M. C. Lavine, T. C. Harman and J. P. Donnelly, “Procedure for Polishing PbS and PbSl-xSex,” Journal of the Electrochemical Society, Vol. 120, 1973, pp. 310–311.

    Article  CAS  Google Scholar 

  19. S. E. R. Hiscocks, “The Vapor Growth of IV-VI Compounds,” Journal of Crystal Growth, Vol. 17, 1972, pp. 221–229.

    Article  Google Scholar 

  20. J. N. Zemel, “Recent Developments in Epitaxial IV-VI Films,” Journal of Luminescence, Vol. 7, 1973, pp. 524–541.

    Article  CAS  Google Scholar 

  21. R. B. Schoolar, “Preparation and Properties of Epitaxial PbS Infrared Detectors,” Naval Ordnance Laboratory Report NOLTR 71-223, October 1971.

  22. R. F. Bis, J. R. Dixon and J. R. Lowney, “Thick Epitaxial Films of Pbl-xSnxTe,” Journal of Vacuum Science and Technology, Vol. 9, 1972, pp. 226–230.

    Article  CAS  Google Scholar 

  23. M. E. Behrndt and S. C. Moreno, “Thick Epitaxial Films of Cubic Zinc Sulfide Deposited by a Hot Wall Technique,” Journal of Vacuum Science and Technology, Vol. 8, 1971, pp. 494–499.

    Article  CAS  Google Scholar 

  24. P. Hudock, “High-Mobility PbS and CdS Films Deposited Under Ultrahigh Vacuum Equilibrium Conditions,” Transactions of the Metallurgical Society of AIME, Vol. 239, 1967, pp. 338–341.

    CAS  Google Scholar 

  25. M. K. Norr, “Polishes and Etches for Tin Telluride, Lead Sulfide, Lead Selenide and Lead Telluride,” Naval Ordnance Laboratory Report NOLTR 63-156, May 1963.

  26. M. Paic and V. Paic, “Formation of Pb During Epitaxial Growth of PbS on KC1 in a Vitreons Silica Hot Wall System,” Journal of Materials Science, Vol. 7, 1972, pp. 1260–1264.

    Article  CAS  Google Scholar 

  27. R. V. Kudryavtseva and S. A. Semiletov, “Micromorphol-ogy of Epitaxial PbS Films,” Soviet Physics-Crystallography, Vol. 18, 1973, pp. 272–273.

    Google Scholar 

  28. D. K. Hohnke and S. W. Kaiser, “Epitaxial PbSe and Pbl-xSnxSe: Growth and Electrical Properties,” Journal of Applied Physics, Vol. 45, 1974, pp. 892–897.

    Article  CAS  Google Scholar 

  29. D. Haas, H. Heinrich and A. Lopez-Otero, “Epitaxial Growth of PbTe,” Electronics of Compound Semiconductor Interfaces Workshop, Fort Collins, 1974, pp. 59-61.

  30. G. A. Antcliffe and S. G. Parker, “Characteristics of Tunable Pbl-xSnxTe Junction Lasers in the 8-12 μm Region,” Journal of Applied Physics, Vol. 44, 1973, pp. 4145–4160.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McLane, G.F., Sleger, K.J. Vacuum deposited epitaxial layers of PbSl−xSex for laser devices. J. Electron. Mater. 4, 465–479 (1975). https://doi.org/10.1007/BF02666230

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02666230

Key words

Navigation