Skip to main content
Log in

Temperature dependence of carrier ionization rates and saturated velocities in silicon

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The temperature dependencies of the carrier ionization rates and saturated drift velocities in silicon have been extracted from microwave admittance and breakdown voltage data of avalanche diodes. The avalanche voltage and broadband (2–8 GHz) microwave small-signal admittance were measured for junction temperatures in the range 280 to 590 K. An accurate model of the diode was used to calculate the admittance characteristic and voltage for each junction temperature. Subsequently, the values of ionization coefficients and saturated velocities were determined at each temperature by a numerical minimization routine to obtain the best fit between the calculated values and measured data.

The resulting ionization rates are well fitted by the temperature dependent model developed by Crowell and Sze from the Baraff ionization-rate theory. The carrier scattering mean free path lengths, average energy loss per collision, and relative ionization cross section are obtained from the best fit agreement between the scattering model and experimental data. The parameter values determined here relevent for use with the above theory are the following:Parameter Holes Electrons εr(eV) 0.063 0.063 εi(eV) 1.6 1.6 λoo(Å) 81.2 77.4 σ 0.391 0.593

The values and temperature dependence of the saturated carrier velocities determined are in good agreement with other published results. At 300 K the low field (E≅104 V/cm) saturated velocity for electrons and holes is 10.4 and 7.4×106 cm/sec, respectively.

The results obtained in this study are of general use for the modeling of effects related to avalanche breakdown and high-field carrier transport in silicon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. L. Kuvås and J. A. Rupp, Int. Electron Devices Meeting, Technical Digest,489 (1973).

  2. C. N. Dunn and J. E. Dalley, IEEE Trans. Microwave Theory and Techniques,MTT-17, 691 (1969).

    Article  Google Scholar 

  3. D. R. Decker and C. N. Dunn, IEEE Trans. Electron Devices,ED-17, 290 (1970).

    Google Scholar 

  4. H. K. Guiranel and J. L. Blue, IEEE Trans. Electron Devices, ED-14, 569 (1967).

    Google Scholar 

  5. M. J. D. Powell, The Computer Journel,7, 155 (1964).

    Article  Google Scholar 

  6. H. P. D. Lanyon, Appl. Phys. Lett.,22, 522 (1973).

    Article  CAS  Google Scholar 

  7. G. A. Baraff, Phys. Rev.,128, 2507 (1962).

    Article  Google Scholar 

  8. C. R. Crowell and S. M. Sze, Appl. Phys. Lett.,9, 242 (1966).

    Article  CAS  Google Scholar 

  9. D. R. Decker, Ph.D. thesis, Lehigh University (1970).

  10. J. H. Parker, Jr., D. W. Feldman and M. Ashkin, Phys., Rev.,155, 712 (1967).

    Article  CAS  Google Scholar 

  11. J. R. Hauser, J. Appl. Phys.,37, 507 (1966).

    Article  CAS  Google Scholar 

  12. C. A. Lee, R. A. Logan, R. L. Batdorf, J. J. Kleimack and W. Wiegmann, Phys. Rev.,134., A761 (1964).

    Article  Google Scholar 

  13. E. O. Kane, Phys. Rev.,159, 624 (1967).

    Article  CAS  Google Scholar 

  14. M. Costato and L. Reggiani, Phys. Stat. Sol.,42, 591 (1970).

    Article  CAS  Google Scholar 

  15. N. I. Meyer and M. H. Jorgensen, J. Phys. Chem. Solids,26, 823 (1965).

    Article  CAS  Google Scholar 

  16. C. Y. Duh and J. L. Moll, Solid State Electronics,11, 917 (1968).

    Article  CAS  Google Scholar 

  17. A. G. Chynoweth, Phys. Rev.,109, 1537 (1958).

    Article  CAS  Google Scholar 

  18. W. N. Grant, Solid-State Electronics,16, 1189 (1973).

    Article  CAS  Google Scholar 

  19. Y. Okuto and C. R. Crowell, Phys. Rev. B,6, 3076 (1972).

    Article  CAS  Google Scholar 

  20. T. Ogawa, Jap. J. Appl. Phys.,4, 473 (1965).

    Article  CAS  Google Scholar 

  21. R. Van Overstraeten and H. DeMan, Solid-State Electronics,13, 583 (1970).

    Article  Google Scholar 

  22. R. D. Baertsch, IEEE Trans, on Electron Devices,ED-13, 987 (correspondence) (1966).

    Google Scholar 

  23. Y. J. Chang and S. M. Sze, J. Appl. Phys.,40, 5392 (1969).

    Article  CAS  Google Scholar 

  24. P. Mars, Int. J. Electronics,32, 23 (1962).

    Article  Google Scholar 

  25. C. Y. Chang, S. S. Chiu and L. P. Hsu, IEEE Trans, on Electron Devices,ED-18, 391 (correspondence) (1971).

    Google Scholar 

  26. W. C. Niehaus, T. E. Seidel and D. E. Iglesias, IEEE Trans, on Electron Devices,ED-20, 765 (1973).

    Google Scholar 

  27. R. A. Kokosa and R. L. Davies, IEEE Trans, on Electron Devices,ED-13, 874 (1966).

    Google Scholar 

  28. T. E. Seidel and D. L. Scharfetter, J. Phys. Chem. Solids,28, 2563 (1967).

    Article  CAS  Google Scholar 

  29. C. Canali, G. Ottaviani and A. Alberigi Quaranta, J. Phys. Chem. Solids,32, 1707 (1971).

    Article  CAS  Google Scholar 

  30. V. Rodriquez, H. Ruegg and M-A. Nicolet, IEEE Trans, on Electron Devices,ED-14, 44 (correspondence) (1967).

    Google Scholar 

  31. C. B. Norris, Jr. and J. F. Gibbons, IEEE Trans, on Electron Devices,ED-14, 38 (correspondence) (1967).

    Google Scholar 

  32. G. A. Haas, T. Pankey, Jr. and F. H. Harris, J. Appl. Phys.,44, 2433 (1973).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Decker, D.R., Dunn, C.N. Temperature dependence of carrier ionization rates and saturated velocities in silicon. J. Electron. Mater. 4, 527–547 (1975). https://doi.org/10.1007/BF02666234

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02666234

Key words

Navigation