Skip to main content
Log in

Microstructural Evolution in Nickel during Rolling from Intermediate to Large Strains

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

High-purity nickel (99. 99 pct) with a grain size of 80 to 100 µm was deformed by cold-rolling from 37 to 98 pct reductions (von Mises effective strains ofεvm = 0. 5 to 4. 5). The deformation microstructures and texture at five strain levels were observed and characterized using transmission electron microscopy (TEM) and neutron diffraction. The microstructures evolved within a framework common to medium and high stacking fault energy fee polycrystals. This framework consists of structural subdivision by higher angle boundaries (geometrically necessary boundaries) at one volume scale and at a smaller volume scale by lower angle cell boundaries (incidental boundaries) for all strain levels. We have characterized the dislocation boundaries, including dense dislocation walls (DDWs), microbands (MBs), and lamellar boundaries (LBs) in terms of crystallographic and macroscopic orientations, morphology, and frequency of occurrence. The microstructural evolution is discussed with special emphasis on factors that contribute to the transition from structures characteristic of small and medium strain microstructures to those characteristic of large strain microstructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Kuhlmann-Wilsdorf:Mater. sci. Eng., 1989, vol. A113, pp. 1–41.

    Article  CAS  Google Scholar 

  2. B. Bay, N. Hansen, and D. Kuhlmann-Wilsdorf:Mater. sci. Eng., 1989, vol. A113, pp. 385–97.

    Article  CAS  Google Scholar 

  3. N. Hansen:Mater. sci. Technol., 1990, vol. 6, pp. 1039–47.

    Article  CAS  Google Scholar 

  4. D. Hughes and N. Hansen:Mater. sci. Technol., 1991, vol. 7, pp. 544–53.

    Article  CAS  Google Scholar 

  5. B. Bay, N. Hansen, D. Hughes, and D. Kuhlmann-Wilsdorf:Acta Metall. Mater., 1992, vol. 40, pp. 205–19.

    Article  CAS  Google Scholar 

  6. D. Kuhlmann-Wilsdorf and N. Hansen:Seripta Metall. Mater., 1991, vol. 25, pp. 1557–62.

    Article  CAS  Google Scholar 

  7. C. Y. Barlow, B. Bay, and N. Hansen:Phil. Mag. A, 1985, vol. 51, pp. 253–75.

    Article  CAS  Google Scholar 

  8. D. A. Hughes and W. D. Nix:Mater. sci. Eng., 1989, vol. A122, pp. 153–72.

    Article  CAS  Google Scholar 

  9. W. H. Zimmer, S. S. Hecker, DL. Rohr, and L. E. Murr:Met. sci., 1983, vol. 17, pp. 198–206.

    Article  Google Scholar 

  10. Y. W. Kim and D. L. Bourell:Metall. Trans. A, 1988, vol. 19A, pp. 2041–48.

    Article  CAS  Google Scholar 

  11. N. K. Park and B. A. Parker:Mater. sci. Eng., 1989, vol. AI 13, pp. 431–39.

    Article  Google Scholar 

  12. E. E. Zasimchuk and L. I. Markashova:Mater. sci. Eng., 1990, vol. A127, pp. 33–39.

    Article  CAS  Google Scholar 

  13. J. Lindbo and T. Leffers:Metallography, 1972, vol. 5, pp. 473–77.

    Article  CAS  Google Scholar 

  14. P. Heilmann, WAT. Clark, and D. A. Rigney:Ultramicroscopy, 1982, vol. 9, pp. 365–72.

    Article  CAS  Google Scholar 

  15. J. Gil Sevillano, P. van Houtte, and E. Aernoudt:Prog. Mater. sci., 1981, vol. 25, pp. 69–412.

    Article  Google Scholar 

  16. G. I. Taylor:J. Inst. Met., 1938, vol. 62, pp. 307–24.

    Google Scholar 

  17. B. Bay, N. Hansen, and D. Kuhlmann-Wilsdorf:Mater. sci. Eng., 1992, vol. A158, pp. 139–46.

    Article  CAS  Google Scholar 

  18. D. Juul Jensen and N. Hansen:Acta Metall. Mater., 1990, vol. 38, pp. 1369–80.

    Article  CAS  Google Scholar 

  19. J. F. Bishop and R. Hill:Phil. Mag., 1951, vol. 42, pp. 414–27.

    Article  CAS  Google Scholar 

  20. G. Y. Chin, E. A. Nesbitt, and A. J. Williams:Acta Metall., 1966, vol. 14, pp. 467–76.

    Article  CAS  Google Scholar 

  21. T. Leffers: “Computer Simulation of the Plastic Deformation in Face Centered Cubic and the Rolling Texture Derived,” Report No. 184, Ris0 National Laboratory, Roskilde, Denmark, 1968.

    Google Scholar 

  22. H. Honeff and H. Mecking:Textures of Materials, G. Gottstein and K. Lucke, ed., 1978, Springer-Verlag, Berlin, pp. 265–75.

    Chapter  Google Scholar 

  23. U. F. Kocks and G. R. Canova:Deformation of Of Polycrystals: Mechanisms and Microstructures, N. Hansen, A. Horsewell, T. Leffers, and H. Lilholt, eds., Risø National Laboratory, Roskilde, Denmark, 1981, pp. 35–44.

    Google Scholar 

  24. U. F. Kocks and H. Chandra:Acta Metall., 1982, vol. 30, pp. 695–709.

    Article  CAS  Google Scholar 

  25. Y. Nakayama and K. Morii:Trans. Jpn. Inst. Met., 1982, vol. 23, pp. 422–31.

    Article  Google Scholar 

  26. J. H. Driver, A. Skalli, and M. Wintenberger:Phil. Mag., 1984, vol. 49, pp. 505–24.

    Article  CAS  Google Scholar 

  27. M. Richert:Z. Metall., 1987, vol. 78, pp. 862–70.

    CAS  Google Scholar 

  28. A. Akef and J. H. Driver:Mater. sci. Eng., 1991, vol. A132, pp. 245–55.

    Article  CAS  Google Scholar 

  29. R. Becker, J. F.Butler, Jr., H. Hu, and L. Lalli:Metall. Trans. A, 1991, vol. 22A, pp. 45–58.

    Article  CAS  Google Scholar 

  30. Y. Zhou, K. W. Neale, and L. S. Toth:Acta Metall. Mater., 1991, vol. 39, pp. 2921–30.

    Article  CAS  Google Scholar 

  31. M. Hatherly and A. S. Malin:Met. Sci., 1979, vol. 6, pp. 308–19.

    CAS  Google Scholar 

  32. A. S. Malin and M. Hatherly:Met. sci., 1979, vol. 13, pp. 463–72.

    Article  CAS  Google Scholar 

  33. L. E. Murr:Res Mech., 1983, vol. 9, pp. 159–89.

    Google Scholar 

  34. Ch. Schwink and W. Vorbrugg:Z. Naturforsch (a), 1967, vol. 22, pp. 626–42.

    Article  CAS  Google Scholar 

  35. H. Wilsdorf and D. Kuhlmann-Wilsdorf:Z. Angew. Phys., 1952, vol. 4, pp. 361–70.

    CAS  Google Scholar 

  36. D. Kuhlmann-Wilsdorf and H. Wilsdorf:Acta Metall., 1953, vol. 1, pp. 394–413.

    Article  CAS  Google Scholar 

  37. B. Bay and N. Hansen:Metall. Trans. A, 1979, vol. 10A, pp. 279–88.

    Article  CAS  Google Scholar 

  38. H. Chandra-Holm and J. D. Embury:Yield, Flow and Fracture of Polycrystals, T. N. Baker, ed., 1983, Applied Science, London, pp. 275–310.

    Google Scholar 

  39. P. van Houtte:Proc. 6th Int. Conf. on Textures and Materials (ICOTOM 6), S. Nagashima, ed., The Iron and Steel Institute of Japan, Tokyo, Japan, 1981, pp. 428–37.

    Google Scholar 

  40. T. Leffers and N. Hansen:Modelling of Plastic Deformation and Its Engineering Applications, S. I. Andersen, J. B. Bilde-Sorensen, N. Hansen, D. Juul Jensen, T. Leffers, H. Lilholt, O. B. Pedersen, and B. Ralph, eds., 1992, Ris0 National Laboratory, Roskilde, Denmark, pp. 57–77.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hughes, D.A., Hansen, N. Microstructural Evolution in Nickel during Rolling from Intermediate to Large Strains. Metall Trans A 24, 2022–2037 (1993). https://doi.org/10.1007/BF02666337

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02666337

Keywords

Navigation