Skip to main content
Log in

A comparison of ultrasonic and X-ray determinations of texture in thin Cu and Al plates

  • Mechanical Behavior
  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Ultrasonic techniques for determining the orientation distribution coefficients (ODC’s), which define the preferred orientation of polycrystals, are discussed. The theory is reviewed for thin plates of cubic crystallites for which the texture information is deduced from the velocity anisotropy of guided modes. Experimental ultrasonic and X-ray predictions of the ODC’s of up to an order of 4 are compared for plates of commercially pure electrolytic tough pitch (ETP) copper and aluminum. ForW 420 andW 440 in both samples andW 400 in copper, the predictions agree to |ΔW|∼10-3. However, considerably greater differences are reported for the predictions ofW 400 in aluminum. Interpretation of these comparisons is assisted by a detailed error analysis for the ultrasonic technique and reference to a number of other recent comparisons of ultrasonic and neutron or X-ray predictions of ODC’s Possible applications of the ultrasonic technique during the production and forming of metal sheet are indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.D. Merchant and J.G. Morris:Textures in Non-Ferrous Metals and Alloys, TMS, Warrendale, PA, 1985.

    Google Scholar 

  2. A.K. Sachdev and J.D. Embury:Formability and Metallurgical Structure, TMS, Warrendale, PA, 1987.

    Google Scholar 

  3. C.S. Barrett:Structure of Metals, 2nd ed., McGraw-Hill, New York, NY, 1952.

    Google Scholar 

  4. H.J. Bunge:Texture Analysis in Materials Science, Butterworth's, London, 1982.

    Google Scholar 

  5. P.F. Sullivan and E.P. Papadakis:J. Acoust. Soc. Am., 1961, vol. 33, pp. 1622–24.

    Article  CAS  Google Scholar 

  6. F. Borik and G.A. Alers:Trans. TMS-AIME, 1965, vol. 233, pp. 7–11.

    Google Scholar 

  7. Y.C. Liu and G.A. Alers:Trans. TMS-AIME, 1966, vol. 236, pp. 489–95.

    CAS  Google Scholar 

  8. E.P. Papadakis:Trans. TMS-AIME, 1966, vol. 236, pp. 1609–13.

    CAS  Google Scholar 

  9. R.-J. Roe:J. Appl. Phys., 1965, vol. 36, pp. 2024–31.

    Article  CAS  Google Scholar 

  10. R.-J. Roe:J. Appl. Phys., 1966, vol. 37, pp. 2069–72.

    Article  CAS  Google Scholar 

  11. H.J. Bunge:Kristall und Technik, 1968, vol. 3, pp. 431–38.

    Article  CAS  Google Scholar 

  12. P.R. Morris:J. Appl. Phys., 1969, vol. 40, pp. 447–48.

    Article  Google Scholar 

  13. C.M. Sayers:J. Phys. D.: Appl. Phys., 1982, vol. 15, pp. 2157–67.

    Article  CAS  Google Scholar 

  14. R.B. Thompson, J.F. Smith and S.S. Lee: inNDE of Microstructure for Process Control, H.N.G. Wadley, ed., ASM, Metals Park, OH, 1985, pp. 73–80.

    Google Scholar 

  15. S.S. Lee, J.F. Smith, and R.B. Thompson: inFormability and Metallurgical Structures, TMS, Warrendale, PA, 1987, pp. 177–90.

    Google Scholar 

  16. C.A. Stickels and P.R. Mould:Metall. Trans., 1970, vol. 1, pp. 1303–12.

    CAS  Google Scholar 

  17. P.R. Mould and T.R. Johnson, Jr.:Sheet Met. Ind., 1973, vol. 50, p. 328.

    Google Scholar 

  18. G.J. Davies, D.J. Goodwill, and J.S. Kallend:Metall. Trans., 1972, vol. 3, pp. 1627–31.

    Article  CAS  Google Scholar 

  19. MODUL-r, manufactured by Tinius Olsen, Willow Grove, PA.

  20. M. Hirao and N. Hara:Appl. Phys. Lett., 1987, vol. 50, pp. 1411–12.

    Article  CAS  Google Scholar 

  21. M. Hirao, N. Hara, H. Fukuoka and K. Fujisawa:J. Acoust. Soc. Am., 1988, vol. 84, pp. 667–72.

    Article  Google Scholar 

  22. M. Hirao, S. Toyosima, H. Fukuoka, K. Fujisawa, and R. Murayama: Faculty of Engineering Science, Osaka University, Toyonaka, Osaka, Japan and Sumitomo Metal Industries, Amagasaki, Hyogo, Japan, unpublished research, 1988.

  23. A.V. Clark, R.B. Thompson, G.V. Blessing, and D. Matlock: inReview of Progress in Quantitative Nondestructive Evaluation, D.O. Thompson and D.E. Chimenti, eds., Plenum Press, New York, NY, 1989, vol. 8, pp. 1031–38.

    Google Scholar 

  24. O. Cassier, C. Donadille, and B. Bacroix: inReview of Progress in Quantitative Nondestructive Evaluation, D.O. Thompson and D.E. Chimenti, eds., Plenum Press, New York, NY, 1989, vol. 8, pp. 2189–96.

    Google Scholar 

  25. E. Schneider and M. Spies: inNondestructive Characterization of Materials, P. Höller, ed., Springer-Verlag, Berlin, in press.

  26. J.F. Bussiere, D. Daniel, K. Sakata, and J.J. Jonas: inNondestructive Measurement of Materials Properties, J. Holbrook and J. Bussiere, eds., MRS, Pittsburgh, PA, in press.

  27. A.V. Clark, Jr., G.V. Blessing, R.B. Thompson, and J.F. Smith: inReview of Progress in Quantitative Nondestructive Evaluation, D.O. Thompson and D.E. Chimenti, eds., Plenum Press, New York, NY, 1988, vol. 7B, pp. 1365–73.

    Google Scholar 

  28. A.V. Clark, Jr., R.C. Reno, R.B. Thompson, J.F. Smith, G.V. Blessing, R.J. Fields, P.P. Delsanto, and R.B. Mignogna:Ultrasonics, 1988, vol. 26, pp. 189–97, and additional unpublished results from the same study.

    Article  CAS  Google Scholar 

  29. M. Hirao, K. Aoki, and H. Fukuoka:J. Acoust. Soc. Am., 1987, vol. 81, pp. 1434–40.

    Article  CAS  Google Scholar 

  30. W. Voigt:Lerbuch der Kristallphysik, Taubner, Leipzig, 1928, p. 962.

    Google Scholar 

  31. A. Reuss:Z. Angew. Math. Mech., 1929, vol. 9, p. 49.

    Article  CAS  Google Scholar 

  32. R. Hill:Proc. R. Soc. London A, 1952, vol. 65, pp. 349–54.

    Google Scholar 

  33. D.R. Allen and C.M. Sayers:Ultrasonics, 1984, vol. 22, pp. 179–88.

    Article  CAS  Google Scholar 

  34. R.B. Thompson, S.S. Lee, and J.F. Smith:Ultrasonics, 1987, vol. 25, pp. 133–37.

    Article  Google Scholar 

  35. S.S. Lee, J.F. Smith, and R.B. Thompson: inNondestructive Characterization of Materials, J.F. Bussiere, ed., Plenum Press, New York, NY, 1988, pp. 555–62.

    Google Scholar 

  36. I.A. Viktorov:Rayleigh and Lamb Waves, Plenum Press, New York, NY, 1967.

    Google Scholar 

  37. B.A. Auld:Acoustic Waves and Fields on Solids, Wiley Interscience, New York, NY, 1973.

    Google Scholar 

  38. B.S. Schabel: Alloy Technology Division, ALCOA Aluminum Company, Alcoa Center, PA, private communication, December 1986.

  39. J. Pospiech and J. Jura:Z. Metallkd., 1974, vol. 65, pp. 324–30.

    CAS  Google Scholar 

  40. C.F. Vasile and R.B. Thompson:J. Appl. Phys., 1979, vol. 50, pp. 2583–88.

    Article  Google Scholar 

  41. R.B. Thompson:IEEE Trans. on Sonics and Ultrasonics, 1973, vol. SU-20, pp. 340–46.

    Google Scholar 

  42. D.R. Allen, R. Langman, and C.M. Sayers:Ultrasonics, 1985, vol. 23, pp. 215–22.

    Article  CAS  Google Scholar 

  43. C.M. Sayers and G.G. Proudfoot:J. Mech. Phys. Solids, 1986, vol. 34, pp. 579–92.

    Article  Google Scholar 

  44. R.B. Thompson, S.S. Lee, and J.F. Smith:J. Acoust. Soc. Am., 1987, vol. 80, pp. 921–31.

    Article  Google Scholar 

  45. B.R. Martin:Statistics for Physicists, Academic Press, London, 1971, pp. 51–54.

    Google Scholar 

  46. Z. Hashin and S. Shtrikman:J. Mech. Phys. Solids, 1962, vol. 10, pp. 335–42.

    Article  Google Scholar 

  47. H. M. Ledbetter and M.W. Austin:Physica Status Solidi, in press.

  48. H.M. Ledbetter and R.C. Reno: inProceedings of ICOTOM-8, U.F. Kocks and J.S. Kallend, eds., TMS, Warrendale, PA, in press.

  49. C.M. Sayers, D.R. Allen, G.E. Haines, and G.G. Proudfoot:Phil. Trans. R. Soc. London A, 1986, vol. 320, pp. 187–200.

    Article  CAS  Google Scholar 

  50. Y. Li and R.B. Thompson: inReview of Progress in Quantitative Nondestructive Evaluation, D.O. Thompson and D.E. Chimenti, eds., Plenum Press, New York, NY, 1989, vol. 8, pp. 1863–70.

    Google Scholar 

  51. I.C. Noyan and J.B. Cohen:Residual Stress Measurement by Diffraction and Interpretation, Springer-Verlag, New York, NY, 1987, pp. 69–72.

    Google Scholar 

  52. A. V. Clark: Metals Fracture and Deformation Division, National Bureau of Standards, Boulder, CO, private communication, April 1987.

  53. J.F. Smith, Y. Li and R.B. Thompson: inReview of Progress in Quantitative Nondestructive Evaluation, D.O. Thompson and D.E. Chimenti, eds., Plenum Press, New York, NY, 1988, vol. 7B, pp. 1383–90.

    Google Scholar 

  54. P.E. Armstrong, D.T. Eash, J.A. O'Rourke, and J.F. Smith:J. Nondestr. Eval., 1987, vol. 36, pp. 33–46.

    Article  Google Scholar 

  55. H.J. Bunge:Kristall und Technik, 1970, vol. 5, pp. 145–75.

    Article  CAS  Google Scholar 

  56. R.F.S. Hearmon: inLandolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology, Springer-Verlag, Berlin/Heidelberg, 1966, vol. III (1), p. 12.

    Google Scholar 

  57. R.B. Thompson and E.F. Lopes:J. Nondestr. Eval., 1984, vol. 4, pp. 107–23.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

S. S. LEE, formerly a Graduate Student with Ames Laboratory

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thompson, R.B., Smith, J.F., Lee, S.S. et al. A comparison of ultrasonic and X-ray determinations of texture in thin Cu and Al plates. Metall Trans A 20, 2431–2447 (1989). https://doi.org/10.1007/BF02666679

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02666679

Keywords

Navigation