Skip to main content
Log in

Hydrogen-controlled cracking—An approach to threshold stress intensity

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Threshold stress intensities, KTH, below which no cracking will occur under stress-corrosion cracking or hydrogen-assisted cracking conditions, are discussed. A quantitative correlation, which suggests why KTH may exist, is evolved. The controlling mechanism is proposed to be a critical concentration of hydrogen, its propensity to form being governed by yield strength, initial concentration, state of stress and temperature variables. The general trends of all variables are reviewed for high strength AISI 4340, maraging and 9 Ni4 Co steels. Specifically it is proposed that Kapplied=KTHCeq=Ccr which means that the applied stress intensity equals the threshold when the equilibrium concentration of hydrogen at the crack tip just achieves the critical concentration. Based upon this concept, correlations are derived for elastic, plane-strain plastic and plane-stress plastic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Zapffe and C. Sims:Trans. AIME, 1941, vol. 145, p. 225.

    Google Scholar 

  2. H. H. Johnson, J. G. Morlet and A. R. Troiano:Trans. TMS-AIME, 1958, vol. 212, p. 528.

    CAS  Google Scholar 

  3. R. P. Frohmberg, W. J. Barnett and A. R. Troiano:Trans. ASM, 1955, vol. 47, p. 892.

    Google Scholar 

  4. E. A. Steigerwald, F. W. Schaller and A. R. Troiano:Trans. TMS-AIME, 1959, vol. 215, p. 1048.

    CAS  Google Scholar 

  5. A. R. Troiano:Trans. ASM, 1960, vol. 52, p. 54.

    Google Scholar 

  6. H. H. Johnson:Fundamental Aspects of Stress Corrosion Cracking, p. 439, Nat. Assoc. Corros. Engrs., Houston, 1969.

    Google Scholar 

  7. A. S. Tetelman and A. J. McEvily, Jr.:Fracture of Structural Materials, John Wiley and Sons, 1967.

  8. N. O. Petch and P. Stables:Nature, 1952, vol. 169, p. 842.

    Article  ADS  Google Scholar 

  9. H. Uhlig:Physical Metallurgy of Stress Corrosion Fracture, p. 1, Interscience, New York, 1959.

    Google Scholar 

  10. A. S. Tetelman:Fundamental Aspects of Stress Corrosion Cracking, p. 446, Nat. Assoc. Corros. Engrs., Houston, 1969.

    Google Scholar 

  11. H. W. Liu:J. Basic Eng., ASME, 1970, vol. 92, p. 633.

    CAS  Google Scholar 

  12. R. P. Harrison, P. T. Heald and J. A. Williams:Scripta Met., 1971, vol. 5, p. 543.

    Article  Google Scholar 

  13. St. John and W. W. Gerberich:Met. Trans., 1973, vol. 4, p. 589.

    Article  Google Scholar 

  14. B.C. Syrett:Corrosion, 1973, vol. 29, no. 1, p. 23.

    CAS  Google Scholar 

  15. H. P. Van Leevwen:Corrosion, 1973, vol. 29, no. 5, p. 197.

    Google Scholar 

  16. R. A. Oriani:Ber. Bunsenges. Phys. Chem., 1972, vol. 76, no. 8, p. 848.

    CAS  Google Scholar 

  17. R. A. Oriani and P. H. Josephic:Scripta Met., 1972, vol. 6, p. 681.

    Article  CAS  Google Scholar 

  18. M. H. Peterson, B. F. Brown, R. L. Newbegin and R. F. Groover:Corrosion, 1967, vol. 23, p. 142.

    CAS  Google Scholar 

  19. G. G. Hancock and H. H. Johnson:Trans. TMS-AIME, 1966, vol. 236, p. 513.

    CAS  Google Scholar 

  20. H. H. Johnson:Fracture, Vol. III, ed by H. Liebowitz, p. 705, Academic Press, 1971.

  21. S. Carter:J. Eng. Fract. Mech., 1971, vol. 3, no. 1, p. 1.

    Article  Google Scholar 

  22. S. Carter:Corrosion, 1971, vol. 27, no. 11, p. 471.

    CAS  Google Scholar 

  23. S. Carter:Corrosion, 1969, vol. 25, no. 10, p. 423.

    CAS  Google Scholar 

  24. B. F. Brown:The Theory of Stress Corrosion Cracking in Alloys, J. Scully, ed., p. 186, NATO, Brussels, W. S. Maney and Son, Leeds, England, 1971.

    Google Scholar 

  25. G. Sandoz: ibid, personal communication to B. F. Brown.

  26. B. F. Brown:Stress-Corrosion-Cracking-A State of the Art, p. 3, ASTM STP 518, Philadelphia, 1972.

    Book  Google Scholar 

  27. H. E. Townsend, Jr.: ibid., ASTM STP 518, Philadelphia, 1972 p. 155.

    Book  Google Scholar 

  28. W. D. Benjamin and E. A. Steigerwald: Air Force Materials Laboratory Report TR-68-80, 1968.

  29. S. Mostovoy, H. R. Smith, R. G. Lingwall and E. J. Ripling:J. Eng. Fract. Mech, 1971, vol. 3, p. 291.

    Article  CAS  Google Scholar 

  30. E. H. Phelps:Fundamental Aspects of Stress Corrosion Cracking, Staehle, Forty, and Van Rooyen, eds., Nat. Assoc. Corros. Engrs., 1969, p. 398.

  31. E. T. Wessel:J. Eng. Fract. Mech., 1968, vol. 1, p. 77.

    Article  CAS  Google Scholar 

  32. F. Barth and E. A. Steigerwald:Met. Trans., 1970, vol. 1, p. 3451.

    CAS  Google Scholar 

  33. W. W. Gerberich and C. E. Hartbower:Fundamental Aspects of Stress Corrosion Cracking, p. 420, Nat. Assoc. Corros. Engrs., Houston, 1969.

    Google Scholar 

  34. A. H. Cottrell,Dislocations and Plastic Flow in Crystals, Clarendon Press, Oxford, 1953.

    MATH  Google Scholar 

  35. R. A. Oriani:Fundamental Aspects of Stress Corrosion Cracking, p. 32, Nat. Assoc. of Corros. Engrs., Houston, 1969.

    Google Scholar 

  36. J. M. Li, R. A. Oriani and L. S. Darken:Z. Physik. Chem., 1966, vol. 49, p. 271.

    CAS  Google Scholar 

  37. J. C. M. Li: private communication in Ref. 35.

  38. F. A. McClintock and G. R. Irwin:Fracture Toughness Testing, p. 84, ASTM STP 381, Philadelphia, 1965.

  39. D. Beachem:Met. Trans., 1972, vol. 3, p. 437.

    Article  CAS  Google Scholar 

  40. A. J. Wang:Quart, Appl. Mech., 1954, vol. 11, p. 427.

    MATH  Google Scholar 

  41. J. L. Swedlow:Int. J. Fract. Mech., 1969, vol. 5, no. 1, p. 33.

    Google Scholar 

  42. J. W. Hutchinson:J. Mech. Phys. Solids, 1968, vol. 16, p. 13.

    Article  MATH  ADS  Google Scholar 

  43. G. T. Hahn and A. R. Rosenfield:Trans. ASM, 1966, vol. 59, p. 909.

    CAS  Google Scholar 

  44. J. M. Krafft: Report of Naval Research Laboratory Program, January, 1966.

  45. K. Farrell and A. G. Quarrell:J. Iron Steel Inst., 1964, vol. 202, p. 102.

    Google Scholar 

  46. D. Kim and A. W. Loginow:Corrosion, 1968, vol. 24, no. 10, p. 313d.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This present paper is based on a portion of the thesis submitted by Y. T. Chen in partial fulfillment of the requrirement for the M.S.degeee at the University of Minnesota.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerberich, W.W., Chen, Y.T. Hydrogen-controlled cracking—An approach to threshold stress intensity. Metall Trans A 6, 271 (1975). https://doi.org/10.1007/BF02667281

Download citation

  • Received:

  • DOI: https://doi.org/10.1007/BF02667281

Keywords

Navigation