Skip to main content
Log in

Mixed-Mode I and II fatigue threshold and crack closure in dual-phase steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Fatigue threshold under mixed-mode I and II loading and elastic plane-strain conditions has been studied in dual-phase steels (DPS) of two types of volume fraction of martensite (Vm) in laboratory air at room temperature. Near-threshold mixed-mode (I and II) fatigue crack growth occurs mainly by two mechanisms: shear mode, and tensile mode. Particular emphasis was placed on the influence of the mode II component. The mixed-mode threshold is controlled not only by mode I displacement but also by the mode II component. Apparent- and effective-bound curves (corrected closure) are obtained for the threshold condition and discussed in terms of the shape and size of the plastic region of crack tip; crack surface rubbing; and especially, roughnessinduced closure and shear resistance of crack surface that resulted in an extremely high extrinsictoughening contribution to the mixed-mode fatigue threshold values. The ratio of the threshold value of pure mode II to that of pure mode I (ΔK thII/ΔKththI) attained highly to 1.9 times; the maximum hoop direction stress-intensity factor range of pure mode II branch crack tip is 2.2 times that of pure mode I. Obviously, the resistance of pure mode II crack growth here is far larger than that of pure mode I; the former is just to introduce the shear resistance of crack surface, the latter, to reduce the driving force of crack tip for crack closure. It is proposed that the apparent- and effective-bound curves are nonconservative risky and too conservative for design purposes, respectively. So, the threshold data should be obtained under the specific conditions found by concrete mechanical, microstructural, and environmental factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.W. Parson and K.J Pascoe:Mater. Sci. Eng., 1976, vol. 22, pp. 31–50.

    Article  Google Scholar 

  2. .J. Miller:Met. Sci., 1977, vol. 11, pp. 432–38.

    CAS  Google Scholar 

  3. K. Ohji, K. Ogura, S. HarActa, and H. Senga:Bull. JSME, 1974, vol. 17, pp. 32–40.

    CAS  Google Scholar 

  4. M.W. Brown, and K.J. Miller:Proc. lnst. Mech. Engr., 1973, vol. 187, pp. 745–55.

    Google Scholar 

  5. Takeo Yokobori, Asamichi Kamei, and A. Toshimitsu Yokobori:Int. J. Fract., 1976, vol. 12, p. 158.

    Google Scholar 

  6. A. Toshimitzu Yokobori, Jr.,Takeo Yokobori, Kiyoshi Sato, and Kazuo Syoji:Fatigue FraC.T. Eng. Mater. Struct., 1985, vol. 8 (4), pp. 315–25.

    Article  Google Scholar 

  7. E.K. Tschegg:Mater. Sci. Eng., 1982, vol. 54, pp. 127–36.

    Article  Google Scholar 

  8. K.N. Akhurst, T.C. Lindley, and K.J. Nix:Fatigue Eng. Mater. Struct., 1983, vol. 6 (4), pp. 345–48.

    Article  Google Scholar 

  9. J.L. Horng, and M.E. Fine,Scripte Metall., 1983, vol. 17, pp. 1427–30.

    Article  Google Scholar 

  10. H. Gao, M.W. Brown, and K.J. Miller:Fatigue Eng. Mater. Struct., 1982, vol. 5 (1), pp. 1–17.

    Article  Google Scholar 

  11. H. Gao, E.R. delos Rios, and K.J. Miller:Eng. Mater. Struct., 1983, vol. 6 (2), pp. 137–47.

    Article  Google Scholar 

  12. L.P. Pook:Int. J. Fatigue, 1985, vol. 7 (1), pp. 21–30.

    Article  Google Scholar 

  13. J.P. Yates and K.J. Miller:Mater. Struct., 1989, vol. 12 (3), pp. 259–70.

    Google Scholar 

  14. L.P. Pook and J.K. Sharpies:Int. J. FraC.T., 1979, vol. 15, p. R223.

    Article  Google Scholar 

  15. H. Suzuki and A.J. McEvily:Metall. Trans. A, 1979, vol. 10A, pp. 475–81.

    CAS  Google Scholar 

  16. K. Minakawa, Y. Matsuo, and A.J. McEvily:Metall. Trans. A, 1982, vol 13A, pp. 439–45.

    CAS  Google Scholar 

  17. V.B. Dutta, S. Suresh, and R.O. Ritchie:Metall. Trans. A, 1984, vol. 15A, pp. 1193–1207.

    CAS  Google Scholar 

  18. Jian Ku Shang, J.-L. Tzou, and R.O. Ritchie:Metall. Trans. A, 1987, vol. 18A, pp. 1613–29.

    CAS  Google Scholar 

  19. R.M. Ramage, K.V. Jata, G.J. Shiflet, and E.A. Starke, Jr.,Metall. Trans. A, 1987, vol. 18A, pp. 1291–98.

    CAS  Google Scholar 

  20. D.L. Chen, Z.G. Wang, X.X. Jiang, S.H. Ai, and C.H. Shih:Mater. Sci. Eng., 1989, vol. A108, pp. 141–51.

    CAS  Google Scholar 

  21. Y.S. Zheng, Z.G. Wang, and S.H. Ai:C-MRS Inter. ’90, June 18–22, 1990, Beijing, People’s Republic of China, vol. 5, p. 257.

    Google Scholar 

  22. K.J. Wang, C.L. Hsu, and H. Kao:Proc. ICF4, 1977, Pergamon Press, New York, NY, vol. 4, pp. 123–33.

    Google Scholar 

  23. W.F. Brown and J.E. Srawley:Plane Strain Crack Toughness Testing of High Strength Metallic Materials, ASTM STP 410, 1966, pp. 1–65.

  24. W.K. Wilson:Eng. Fracture Mech., 1970, vol. 2, pp. 169–71.

    Article  Google Scholar 

  25. J.P. Benthem and W.T. Koiter:Methods of Analysis and Solution to Crack Problems, G.C. Sih, ed., Noordhoff, Leyden, The Netherlands, 1973, pp. 131–78.

  26. F. Erdogan and G.C. Sih:J. Basic Eng., 1963, vol. 85, pp. 519–27.

    Google Scholar 

  27. T.M. Maccagno and J.F. Knott:Eng. FraC.T. Mech., 1989, vol. 34 (1), pp. 65–86.

    Article  Google Scholar 

  28. K. Tanaka:Eng. FraC.T. Mech., 1974, vol. 6, p. 493.

    Article  CAS  Google Scholar 

  29. K. Hyashi and S. Nemat-Nasser:J. Appl. Mech., 1981, vol. 48, pp. 520–24.

    Article  Google Scholar 

  30. G.C. Sih:Int. J. FraC.T., 1974, vol. 10, pp. 305–21.

    Article  Google Scholar 

  31. M.W. Brown, H.W. Liu, A.P. Kfouri, and K.J. Miller:ICF5, Pergamon Press, New York, NY, 1980, vol. 2, p. 891.

    Google Scholar 

  32. T.M. Maccagno and J.F. Knott:Int. J. FraC.T., 1985, vol. 29, pp. R49-R57.

    Article  Google Scholar 

  33. H.A. Richard:Proc. 6th Int. Conf. on FraC.T., New Delhi, Pergamon Press, Oxford, 1984, vol. 5, pp. 3337–44.

    Google Scholar 

  34. R.J. Sanford and J.W. Daily:Eng. FraC.T. Mech., 1979, vol. 11, pp. 621–33.

    Article  Google Scholar 

  35. D.L. Jones and D.B. Chisholm:Eng. FraC.T. Mech., 1975, vol. 7, pp. 261–70.

    Article  Google Scholar 

  36. C.F. Shih:Small Scale Yielding Analysis of Mixed Mode Plane Strain Crack Problems, ASTM STP, 560, 1974, pp. 187–210.

  37. S. Aoki, K. Kishimoto, T. Yoshida, and M. Sakata:J. Mech. Phys. Solids, 1987, vol. 35 (4), pp. 31–55.

    Google Scholar 

  38. R.P. Wei and J.D. Landes:Mater. Res. Std., ASTM 9, 1969, vol. 25.

  39. R.P. Wei and M. Gao:Scripta Metall., 1983, vol. 17, p. 959.

    Article  Google Scholar 

  40. H.W. Liu:Fatigue FraC.T. Eng. Mater. Struct., 1985, vol. 8 (4), pp. 295–313.

    Article  Google Scholar 

  41. A. Otsuka, K. Mori, and T. Miyata:Eng. FraC.T. Mech., 1975, vol. 7, pp. 429–39.

    Article  CAS  Google Scholar 

  42. Y.S. Zheng: Ph.D. Thesis, Institute of Metal Research, Academia Sinica, Shenyang, People’s Republic of China, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Y.S. ZHENG, Formerly Ph.D. Student, State Key Laboratory for Fatigue and Fracture of Materials, Institute of Metal Research, Academia Sinica, Shenyang, 110015, People’s Republic of China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, Y.S., Wang, Z.G. & Ai, S.H. Mixed-Mode I and II fatigue threshold and crack closure in dual-phase steels. Metall Mater Trans A 25, 1713–1723 (1994). https://doi.org/10.1007/BF02668536

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02668536

Keywords

Navigation