Skip to main content
Log in

A simplified model of heat generation during the uniaxial tensile test

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The temperature rise in a sheet tensile specimen has been calculated by the finite difference method for a plain-carbon steel at various strain rates and in several environments. Prior to necking, a uniform heat generation function is used with the governing flow equation while during the post-uniform strain, an empirical heat generation function is used. The empirical function is based on a strain distribution equation generated by curve fitting of experimental data. The effect of heat transfer conditions on the temperature increase has been discussed. The maximum temperature rise in air may reach 42 K at the center of an I.F. steel specimen at a strain rate of 10-2/s. The instability strain during tensile testing has been predicted by taking into account strain hardening, strain-rate hardening, and deformationinduced heating. The results show that significant deformation heating can occur during tensile testing in air at “normal” strain rates near 10-2/s, and that the uniform elongation can be affected markedly. Predictions for other alloys based on tabulated data are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Considère:Ann. Points Chaussees, 1885, Ser. 6, vol. 9, p. 574.

    Google Scholar 

  2. E. W. Hart:Acta Metall., 1967, vol. 15, p. 351.

    Article  Google Scholar 

  3. J. J. Jonas, R. A. Holt, and C. E. Colemen:Acta Metall., 1976, vol. 24, p. 811.

    Article  Google Scholar 

  4. U. F. Kocks, J. J. Jonas, and H. Mecking:Acta Metall., 1979, vol. 27, p. 419.

    Article  Google Scholar 

  5. J. J. Jonas and B. Baudelet:Acta Metall., 1977, vol. 25, p. 43.

    Article  Google Scholar 

  6. J. W. Hutchinson and K. W. Neale:Acta Metall., 1977, vol. 25, p. 839.

    Article  Google Scholar 

  7. E. Duncombe:Int. J. Mech. Sci., 1972, vol. 14, p. 325.

    Article  Google Scholar 

  8. J. D. Campbell:J. Mech. Phys. Solids, 1967, vol. 15, p. 359.

    Article  Google Scholar 

  9. A. K. Ghosh:Metall. Trans. A, 1977, vol. 8A, p. 1221.

    Article  Google Scholar 

  10. I. H. Lin, J. P. Hirth, and E. W. Hart:Acta Metall., 1981, vol. 29, p. 819.

    Article  Google Scholar 

  11. A. K. Ghosh:Acta Metall., 1977, vol. 25, p. 1413.

    Article  Google Scholar 

  12. A. S. Korhonen and H. J. Kleemola:Metall. Trans. A, 1978, vol. 9A, p. 979.

    Article  Google Scholar 

  13. G. Ferron:Mat. Sci. and Eng., 1981, vol. 49, p. 241.

    Article  Google Scholar 

  14. M. Wada and T. Nakamura:Phil. Mag. A, 1978, vol. 38, No. 2, p. 167.

    Article  Google Scholar 

  15. C. Fressengeas and A. Molinari:Acta Metall., 1985, vol. 33, p. 378.

    Article  Google Scholar 

  16. A. K. Chakrabarti and J. W. Spretnak:Metall. Trans. A, 1975, vol. 6A, p. 733.

    Article  Google Scholar 

  17. A. K. Chakrabarti and J. W. Spretnak:Metall. Trans. A, 1975, vol. 6A, p. 737.

    Article  Google Scholar 

  18. W. S. Farren and G. I. Taylor:Proc. Roy. Soc. A, 1925, vol. 107, p. 422.

    Article  Google Scholar 

  19. C. Zener and J. H. Hollomon:J. Appl. Phys., 1944, vol. 15, p. 22.

    Article  Google Scholar 

  20. A. Troost and A. El-Schennawi:Arch. Eisenhüttenw., 1975, vol. 46, p. 729.

    Article  Google Scholar 

  21. G. Ferron:Mat. Sci. and Eng., 1982, vol. 52, p. 133.

    Article  Google Scholar 

  22. S. L. Semiatin, R. A. Ayres, and J. J. Jonas:Metall. Trans. A, 1985, vol. 16A, p. 2299.

    Article  Google Scholar 

  23. A. K. Sachdev and J. E. Hunter, Jr.:Metall. Trans. A, 1982, vol. 13A, p. 1063.

    Article  Google Scholar 

  24. G. D. Lahoti and T. Altan:J. Eng. Mater. Technol. Trans., ASME Ser. H, 1975, vol. 97, p. 113.

    Article  Google Scholar 

  25. H. J. Kleemola and A. J. Ranta-Eskola:Sheet Metal Ind., 1979, vol. 48, p. 1046.

    Google Scholar 

  26. M. Lin and R. H. Wagoner:Scripta Metall., 1986, vol. 20, p. 143.

    Article  Google Scholar 

  27. R. A. Ayres:Metall. Trans. A, 1985, vol. 16A, p. 37.

    Article  Google Scholar 

  28. Armco Steel Corporation, Middletown, OH.

  29. Metals Handbook, 9th ed., ASM International, Metals Park, OH, 1978, vol. 1, p. 145; vol. 2, p. 3.

  30. J. Lloyd and H. Sang:Metall. Trans. A, 1979, vol. 10A, p. 1767.

    Article  Google Scholar 

  31. J. O. Kumpulainen, A. J. Ranta-Eskola, and R. H.O. Rintamaa:J. Eng. Mater. ’ Tech., 1983, vol. 105, p. 119.

    Article  Google Scholar 

  32. Kepro Circuit Systems Inc., Fenton, MO.

  33. Y. Gao: Master’s Thesis, The Ohio State University, December 20, 1985.

  34. J. R. Simonson:An Introduction To Engineering Heat Transfer, 1st ed., McGraw-Hill, London, 1967.

    Google Scholar 

  35. K. Chung and R. H. Wagoner:Metall. Trans. A, 1986, vol. 17A, p. 1632.

    Article  Google Scholar 

  36. M. S. Caceei and W. P. Cacheris:Byte, May 1984, p. 340.

  37. K. S. Raghavan and R. H. Wagoner:Int. J. Plasticity, 1987, vol. 3, p. 33.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, Y., Wagoner, R.H. A simplified model of heat generation during the uniaxial tensile test. Metall Trans A 18, 1001–1009 (1987). https://doi.org/10.1007/BF02668548

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02668548

Navigation