Skip to main content
Log in

The role of grain size and strain in work hardening and texture development

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Polycrystalline copper (99.999 pct) having four different grain sizes (from 4 to 220 μm) was strained in tension at room temperature to true plastic strains of 0.05, 0.10, 0.20, and 0.30. The initial texture of the materials was determined by neutron diffraction, as were the deformation textures. Both inverse pole figures and calculated TaylorM factors were then derived from the data. In general, it was observed that the texture strengthens at increasing strain and that the effect of grain size on this development is not very pronounced. The measured change in the volume concentration of the (111) texture component was compared to that obtained from a model simulation, and in general, the experiments and the simulations agreed well. The effect on the flow stress of the initial texture, and on the texture which develops during straining, could be accounted for on the basis of TaylorM factors calculated from the experimental results, and it was found that there is an effect of texture on the flow stress. The flow stress at strains above yield, expressed as a modified Hall-Petch relationship, was not greatly affected by corrections toM induced by strain and grain size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.P. Hirth:Metall. Trans., 1972, vol. 3, pp. 3047–67.

    Article  CAS  Google Scholar 

  2. A.W. Thompson: inWork Hardening in Tension and Fatigue, A.W. Thompson, ed., TMS-AIME, New York, NY, 1977, pp. 89–126.

    Google Scholar 

  3. H. Mecking: inStrength of Metals and Alloys, Proc. ICSMA5, P. Haasen, V. Gerold, and G. Kostorz, eds., Pergamon Press, Oxford, 1980, vol. 3, pp. 1573–94.

    Google Scholar 

  4. U.F. Kocks and G.R. Canova: inDeformation of Polycrystals, Proc. 2nd Risø Int. Symp., N. Hansen, A. Horsewell, T. Leffers, and H. Lilholt, eds., Risø National Laboratory, Roskilde, Denmark, 1981, pp. 35–44.

    Google Scholar 

  5. T. Leffers: inDeformation of Polycrystals, Proc. 2nd Risø Int. Symp., N. Hansen, A. Horsewell, T. Leffers, and H. Lilholt, eds., Risø National Laboratory, Roskilde, Denmark, 1981, pp. 55–71.

    Google Scholar 

  6. H. Mecking: inDeformation of Polycrystals, Proc. 2nd Risø Int. Symp., N. Hansen, A. Horsewell, T. Leffers, and H. Lilholt, eds., Risø National Laboratory, Roskilde, Denmark, 1981, pp. 73–86.

    Google Scholar 

  7. T. Leffers and O.B. Pedersen: inStrength of Metals and Alloys, Proc. ICSMA 6, R.C. Gifkins, ed., Pergamon Press, Oxford, 1982, vol. 1, pp. 75–82.

    Google Scholar 

  8. N. Hansen:Metall. Trans. A, 1985, vol. 16A, pp. 2167–90.

    CAS  Google Scholar 

  9. O.B. Pedersen and T. Leffers: inConstitutive Relations and Their Physical Basis, Proc. 8th Risø Int. Symp., S.I. Andersen, J.B. Bilde-S0rensen, N. Hansen, T. Leffers, H. Lilholt, O.B. Pedersen, and B. Ralph, eds., Risø National Laboratory, Roskilde, Denmark, 1987, pp. 147–72.

    Google Scholar 

  10. T. Leffers:A Kinematical Model for the Plastic Deformation of Face-Centered Cubic Polycrystals, Risø Report No. 302, Risø National Laboratory, Roskilde, Denmark, 1975.

    Google Scholar 

  11. H. Naaman, R. Talreja, D. Juul Jensen, and N. Hansen:Textures and Microstructures, 1987, vol. 7, pp. 149–70.

    CAS  Google Scholar 

  12. J.F.W. Bishop and R. Hill:Phil. Mag., 1951, vol. 42, pp. 414–27.

    CAS  Google Scholar 

  13. W.F. Hosford and W.A. Backofen: inFundamentals of Deformation Processing, Proc. 9th Sagamore Conf., J.J. Burke, ed., Syracuse University Press, Syracuse, NY, 1964, pp. 259–92.

    Google Scholar 

  14. U.F. Kocks:Metall. Trans., 1970, vol. 1, pp. 1121–43.

    Google Scholar 

  15. Anthony W. Thompson and Walter A. Backofen:Metall. Trans., 1971, vol. 2, pp. 2004–05.

    Article  CAS  Google Scholar 

  16. D. Juul Jensen and J.K. Kjems:Textures and Microstructures, 1983, vol. 5, pp. 239–51.

    Article  Google Scholar 

  17. D. Juul Jensen, N. Hansen, J.K. Kjems, and T. Leffers: inMicrostructural Characterization of Materials by Non- Microscopical Techniques, Proc. 5th Risø Int. Symp., N.H. Andersen, M. Eldrup, N. Hansen, D. Juul Jensen, T. Leffers, H. Lilholt, O.B. Pedersen, and B.N. Singh, eds., Risø National Laboratory, Roskilde, Denmark, 1984, pp. 325–32.

    Google Scholar 

  18. H.-J. Bunge:Mathematische Methoden der Texturanalyse, Akademie-Verlag, Berlin, 1969.

    Google Scholar 

  19. G.R. Canova and U.F. Kocks: inProc. 7th Int. Conf. on Textures of Materials, ICOTOM-7, CM. Brakman, ed., Neth. Soc. Mater. Sci., Holland, 1984, pp. 573–79.

    Google Scholar 

  20. A.D. Rollett, G.R. Canova, and U.F. Kocks: inFormability and Metallurgical Structure, A.K. Sachdev and J.D. Embury, eds., TMS, Warrendale, PA, 1987, pp. 147–57.

    Google Scholar 

  21. U.F. Kocks, M.G. Stout, and A.D. Rollett: inStrength of Metals and Alloys, Proc. ICSMA 8, P.O. Kettunen, T.K. Lepistö, and M.E. Lehtonen, eds., Pergamon Press, Oxford, 1988, pp. 25–34.

    Google Scholar 

  22. C. Tome, G.R. Canova, U.F. Kocks, N. Christodoulou, and J.J. Jonas:Acta Metall., 1984, vol. 32, pp. 1637–53.

    Article  CAS  Google Scholar 

  23. H.-J. Bunge:Kristall u. Techn., 1971, vol. 5, pp. 145–75.

    Article  Google Scholar 

  24. H.-J. Bunge, M. Schulze, and D. Grzesik:Peine u. Salzgitter- berichte, Sonderheft, Clausthal, 1980, pp. 1–31.

    Google Scholar 

  25. A.W. Thompson and B.C. Wonsiewicz:Metall. Trans. A, 1981, vol. 12A, pp. 531–34.

    Google Scholar 

  26. A.W. Thompson, M.I. Baskes, and W.F. Flanagan:Acta Metall., 1973, vol. 21, pp. 1017–28.

    Article  CAS  Google Scholar 

  27. N. Hansen and B. Ralph:Acta Metall., 1982, vol. 30, pp. 411–17.

    Article  CAS  Google Scholar 

  28. T. Leffers: inProc. 8th Int. Conf. on Textures of Materials ICOTOM-8, J.S. Kältend and G. Gottstein, eds., TMS, Warrendale, PA, 1988, pp. 273–84.

    Google Scholar 

  29. Torben Leffers:Metall. Trans. A, 1974, vol. 5, pp. 2110–15.

    Article  CAS  Google Scholar 

  30. T. Ozturk, J.S. Kallend, and G. J. Davies: inProc. 6th Int. Conf. on Texture of Materials ICOTOM-6, S. Nagashima, ed., Iron Steel Institute, Japan, Tokyo, 1981, pp. 507–18.

    Google Scholar 

  31. N. Hansen, B. Bay, D. Juul Jensen, and T. Leffers: inStrength of Metals and Alloys, Proc. ICSMA 7, H.J. McQueen, J.-P. Bailon, J.I. Dickson, J.J. Jonas, and M.G. Akben, eds., Pergamon Press, Oxford, 1985, pp. 317–22.

    Google Scholar 

  32. S. Riegger: Dissertation, University of Karlsruhe, Federal Republic of Germany, 1974.

  33. Anthony W. Thompson:Metall. Trans., 1974, vol. 5, pp. 39–42.

    CAS  Google Scholar 

  34. Yield, Flow and Fracture of Polycrystals, T.N. Baker, ed., Applied Science Press, London, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jensen, D.J., Thompson, A.W. & Hansen, N. The role of grain size and strain in work hardening and texture development. Metall Trans A 20, 2803–2810 (1989). https://doi.org/10.1007/BF02670172

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02670172

Keywords

Navigation