Skip to main content
Log in

Mathematical modeling of sulfide flash smelting process: Part I. Model development and verification with laboratory and pilot plant measurements for chalcopyrite concentrate smelting

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

A mathematical model has been developed to describe the various processes occurring in a flash furnace shaft. The model incorporates turbulent fluid dynamics, chemical reaction kinetics, and heat and mass transfer. The key features include the use of thek-ε turbulence model, incorporating the effect of particles on the turbulence, and the four-flux model for radiative heat transfer. The model predictions were compared with measurements obtained in a laboratory flash furnace and a pilot plant flash furnace. Good agreement was obtained between the predicted and measured data in terms of the SO2 and O2 concentrations, the amount of sulfur remaining in the particles, and the gas temperature. Model predictions show that the reactions of sulfide particles are mostly completed within about 1 m of the burner, and the double-entry burner system with radial feeding of the concentrate particles gives better performance than the singleentry burner system. The model thus verified was used to further predict various aspects of industrial flash furnace operation. The results indicate that from the viewpoint of sulfide oxidation, smelting rate can be substantially increased in most existing industrial flash furnaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.J. Themelis, J.K. Makinen, and N.D.H. Munroe:Physical Chemistry of Extractive Metallurgy, V. Kudryk and Y.K. Rao, eds., TMS-AIME, Warrendale, PA, 1985, pp. 289–309.

    Google Scholar 

  2. Y.H. Kim and N.J. Themelis:The Reinhardt Schuhmann Int. Symp. on Innovative Technology and Reactor Design in Extraction Metallurgy, D.R. Gaskell, J.P. Hager, J.E. Hoffmann, and P.J. Mackey, eds., TMS-AIME, Warrendale, PA, 1986, pp. 349–69.

    Google Scholar 

  3. Y. Fukunaka, S. Nakashita, Z. Asaki, and Y. Kondo: inWorld Mining and Metals Technology, A. Weiss, ed., AIME, New York, NY, 1976, vol. 1, pp. 481–504.

    Google Scholar 

  4. S. Ruottu:Combust. Flame, 1979, vol. 34, pp. 1–11.

    Article  CAS  Google Scholar 

  5. Y.B. Hahn and H.Y. Sohn:Chem. Eng. Commun., 1987, vol. 61, pp. 39–57.

    Article  CAS  Google Scholar 

  6. Y.B. Hahn and H.Y. Sohn:Metall. Trans. B, 1988, vol. 19B, pp. 871–84.

    CAS  Google Scholar 

  7. D.B. Spalding:Numerical Computation of Multiphase Flows, Lecture Notes, Thermal Science and Propulsion, Purdue University, West Lafayette, IN, 1979, pp. 161–90.

    Google Scholar 

  8. L.D. Smoot and D.T. Pratt:Pulverized Coal Combustion and Gasification, Plenum Press, New York, NY, 1979, pp. 57–64, 83-104, and 217-31.

    Google Scholar 

  9. L.D. Smoot and P.J. Smith:User’s Manual for a Computer Program for 2-Dimensional Coal Gasification or Combustion (PCGC-2), Combustion Laboratory, Brigham Young University, Provo, UT, 1983.

    Google Scholar 

  10. L.D. Smoot and P.J. Smith:Coal Combustion and Gasification, Plenum Press, New York, NY, 1985, pp. 245–64 and 349-71.

    Google Scholar 

  11. B.E. Launder and D.B. Spalding:Mathematical Models of Turbulence, Academic Press, London, 1972.

    Google Scholar 

  12. B.E. Launder and D.B. Spalding:Comput. Methods Appl. Mech. Eng., 1974, vol. 3, pp. 269–89.

    Article  Google Scholar 

  13. E.K. Melville and N.C. Bray:Int. J. Heat Mass Transfer, 1979, vol. 22, pp. 647–56.

    Article  Google Scholar 

  14. C.T. Crowe, M.P. Sharma, and D.E. Stock:J. Fluids Eng., Trans. ASME, 1977, pp. 325-32.

  15. P.J. Smith, T.H. Fletcher, and L.D. Smooth:18th Symp. (Int.) on Combustion, The Combustion Institute, Pittsburgh, PA, 1981, pp. 1285–93.

    Google Scholar 

  16. A.S. Abbas, S.S. Koussa, and F.C. Lockwood:18th Symp. (Int.) on Combustion, The Combustion Institute, Pittsburgh, PA, 1981, pp. 1427–37.

    Google Scholar 

  17. T.H. Fletcher: Ph.D. Dissertation, Brigham Young University, Provo, UT, 1983.

    Google Scholar 

  18. Y.B. Hahn and H.Y. Sohn:Metall. Trans. B, 1990, vol. 00B, pp. 959–66.

    Google Scholar 

  19. P.C. Chaubal: Ph.D. Dissertation, University of Utah, Salt Lake City, UT, 1986.

    Google Scholar 

  20. P.C. Chaubal and H.Y. Sohn: University of Utah, Salt Lake City, UT, unpublished research, 1987.

  21. P.C. Chaubal and H.Y. Sohn:Metall. Trans. B, 1986, vol. 17B, pp. 51–60.

    CAS  Google Scholar 

  22. J.E. Dutrizac:Can. Mineral., 1976, vol. 14, pp. 172–81.

    Google Scholar 

  23. F.R.A. Jorgensen:Proc. Australas. Inst. Min. Metall., 1983, vol. 288, pp. 37–46.

    CAS  Google Scholar 

  24. R.B. Bird, W.E. Stewart, and E.N. Lightfoot:Transport Phenomena, John Wiley & Sons, Inc., New York, NY, 1960, p. 647.

    Google Scholar 

  25. T. Kumura, Y. Ojima, Y. Mori, and Y. Ishii: The ReinhardtSchumann Int. Symp. on Innovative Technology and Reactor Design in Extraction Metallurgy, D.R. Gaskell, J.P. Hager, J.E. Hoffmann, and P.J. Mackey, eds., TMS-AIME, Warrendale, PA, 1986, pp. 403–18.

    Google Scholar 

  26. E. Partelpoeg:Flash Reaction Processes, Proc. of a Center for Pyrometallurgy Conf., University of Utah, Salt Lake City, UT, June 15–17, 1988, D.G.C. Robertson, H.Y. Sohn, and N.J. Themelis, eds., Center for Pyrometallurgy, University of Missouri-Rolla, Rolla, MO, 1988, pp. 35–45.

    Google Scholar 

  27. E.E. Khalil, D.B. Spalding, and J.H. Whitelaw:Int. J. Heat Mass Transfer, 1975, vol. 18, pp. 775–90.

    Article  CAS  Google Scholar 

  28. P.J. Smith: Ph.D. Dissertation, Brigham Young University, Provo, UT, 1979.

    Google Scholar 

  29. P.J. Smith: Brigham Young University, Provo, UT, personal communication, Nov. 1987.

  30. A.D. Gosman and W.M. Pun: Lecture Notes for Course Entitled “Calculation of Recirculating Flows,” Imperial College, London, 1973.

    Google Scholar 

  31. S.V. Patankar:Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York, NY, 1980, pp. 79–135.

    Google Scholar 

  32. J. Asteljoki: Outokumpu Oy, Pori, Finland, personal communication, Feb. 1987.

  33. J. Makinen: Outokumpu Oy, Harjavalta, Finland, personal communication, Feb. 1987.

  34. N. Kemori, Y. Ojima, and Y. Kondo:Flash Reaction Processes, Proc. of a Center for Pyrometallurgy Conf., University of Utah, Salt Lake City, UT, June 15-17, 1988, D.G.C. Robertson, H.Y. Sohn, and N.J. Themelis, eds., Center for Pyrometallurgy, University of Missouri-Rolla, Rolla, MO, 1988, pp. 47–68.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Graduate Student, Department of Metallurgical Engineering, University of Utah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hahn, Y.B., Sohn, H.Y. Mathematical modeling of sulfide flash smelting process: Part I. Model development and verification with laboratory and pilot plant measurements for chalcopyrite concentrate smelting. Metall Trans B 21, 945–958 (1990). https://doi.org/10.1007/BF02670265

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02670265

Keywords

Navigation