Skip to main content
Log in

Formation of macrosegregation by multicomponent thermosolutal convection during the solidification of steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The formation of macrosegregation by multicomponent thermosolutal convection during the solidification of steel is simulated by simultaneously solving macroscopic mass, momentum, energy, and species conservation equations with full coupling of the temperature and concentrations through thermodynamic equilibrium at the solid/liquid interface. The flow field, solid fraction evolution, and macrosegregation patterns for four cases are presented. The results show both the formation of channel segregates and the formation of islands of mush surrounded by bulk melt. In examining the solidification of a ten-element steel, the global extent of macrosegregation of an element is found to be linearly dependent on its partition coefficient (more severe segregation for small partition coefficient), although such scaling is not possible locally. Results for the solidification of a binary Fe-C alloy (with the same carbon content as the ten-element alloy) are similar to those for the ten-element alloy due solely to the large contribution of carbon to buoyancy driven flow in the ten-element steel chosen for study. While including only those elements that make significant contributions to buoyancy driven flow reproduces the global extent of macrosegregation seen in the ten-element alloy, local differences in the predictions are visible. Finally, comparison of results for the solidification of the same ten-element steel using two different sets of data to describe the partition coefficients and change in liquidus temperature with concentration of the elements shows completely opposite behavior,i.e., upward flow through the mushy zone for one case and downward flow for the other. Thus, the need to have accurate phase-equilibrium data when modeling multicomponent macrosegregation is illustrated. Together, the results give an indication of what areas require more careful examination if accurate modeling of multicomponent solidification is to be accomplished.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.D. Bennon and F.P. Incropera:Metall. Trans. B., 1987, vol. 18B, pp. 611–16.

    CAS  Google Scholar 

  2. C. Beckermann and R. Viskanta:Physicochem. Hydrodyn., 1988, vol. 10, pp. 195–213.

    CAS  Google Scholar 

  3. V.R. Voller, A.D. Brent, and C. Prakash:Int. J. Heat Mass Transfer, 1989, vol. 32, pp. 1719–31.

    Article  CAS  Google Scholar 

  4. G. Amberg:Int. J. Heat Mass Transfer, 1991, vol. 34, pp. 217–27.

    Article  CAS  Google Scholar 

  5. S.D. Felicelli, F.C. Heinrich, and D.R. Poirier:Metall. Trans. B, 1991, vol. 22B, pp. 847–59.

    Article  CAS  Google Scholar 

  6. P.J. Prescott and F.P. Incropera:Metall. Trans. B, 1991, vol. 22B, pp. 529–40.

    CAS  Google Scholar 

  7. Q.Z. Diao and H.L. Tsai:Metall. Trans. A, 1993, vol. 24A, pp. 963- 73.

    Google Scholar 

  8. M.C. Schneider and C. Beckermann:Int. J. Heat Mass Transfer, 1995, in press.

  9. R. Mehrabian and M.C. Flemings:Metall. Trans., 1970, vol. 1, pp. 455–64.

    CAS  Google Scholar 

  10. T. Fujii, D.R. Poirier, and M.C. Flemings:Metall. Trans. B., 1979, vol. 10B, pp. 331–39.

    Article  CAS  Google Scholar 

  11. D.R. Poirier and M.M. Andrews:Proc. 1st Int. Steel Foundry Congress, Steel Foundrymens’ Society of America, Des Plaines, IL, 1985, pp. 307–22.

    Google Scholar 

  12. F. Roch, H. Combeau, I. Poitrault, J.C. Chevrier, and G. Lesoult:Proc. 6th Int. Iron and Steel Congress, vol. I, Fundamentals, Iron and Steel Institute of Japan, Nagoya, Japan, 1990, pp. 665–72.

    Google Scholar 

  13. H. Combeau, F. Roch, I. Poitrault, J.C. Chevrier, and G. Lesoult: inAdvanced Computational Methods in Heat Transfer, vol. 3, Phase Change and Combustion Simulation, Springer-Verlag, New York, NY, 1990, pp. 79–90.

    Google Scholar 

  14. F. Roch, H. Combeau, J.Ch. Chevrier, and G. Lesoult:Modeling of Casting, Welding and Advanced Solidification Processes V, TMS, Warrendale, PA, 1991, pp. 789–95.

    Google Scholar 

  15. H. Vannier, H. Combeau, and G. Lesoult:Numerical Methods in Industrial Forming Processes, A.A. Balkema, Rotterdam, The Netherlands, 1992, pp. 835–40.

    Google Scholar 

  16. V.R. Voller and S. Sundarraj: personal communication, Dept. of Civil and Mineral Engineering, The University of Minnesota, Minneapolis, MN, 1992.

  17. J. Ni and C. Beckermann:Metall. Trans. B, 1991, vol. 22B, pp. 349- 61.

    Google Scholar 

  18. M.C. Schneider: Master’s Thesis, The University of Iowa, Iowa City, IA, 1991.

    Google Scholar 

  19. C. Beckermann and R. Viskanta:Appl. Mech. Rev., 1993, vol. 46, pp. 1–27.

    Article  Google Scholar 

  20. D.R. Poirier:Metall. Trans. B, 1987, vol. 18B, pp. 245–55.

    CAS  Google Scholar 

  21. J.S. Kirkaldy and E.A. Baganis:Metall. Trans. A, 1978, vol. 9A, pp. 495–501.

    CAS  Google Scholar 

  22. A. Kagawa and T. Okamoto:Mater. Sci. Technol., 1986, vol. 2, pp. 997–1008.

    CAS  Google Scholar 

  23. J. Wanqi and Z. Yaohe:Metall. Trans. B, 1989, vol. 20B, pp. 723- 30.

    Google Scholar 

  24. C.Y. Wang and C. Beckermann:Metall. Trans. A, 1993, vol. 24A, pp. 2787–2802.

    CAS  Google Scholar 

  25. C.Y. Wang and C. Beckermann:Mater. Sci. Eng., 1993, vol. A171, pp. 199–211.

    CAS  Google Scholar 

  26. M. Rappaz and V.R. Voller:Metall. Trans. A, 1990, vol. 21A, pp. 749–53.

    CAS  Google Scholar 

  27. D.R. Poirier, P.J. Nandapurkar, and S. Ganesan:Metall. Trans. B, 1991, vol. 22B, pp. 889–900.

    Article  CAS  Google Scholar 

  28. M.J.M. Krane and F.P. Incropera: inTransport Phenomena in Solidification, C. Beckermann, H.P. Wang, L.A. Bertram, M.S. Sohal and S.I. Guceri, eds., ASME, New York, NY, 1994, pp. 13–27.

    Google Scholar 

  29. S.V. Patankar :Numerical Heat Transfer and Fluid Flow, McGraw- Hill, New York, NY, 1980.

  30. C. Prakash and V. Voller:Num. Heat Transfer, 1989, vol. 15, pp. 171–89.

    Article  Google Scholar 

  31. M.C. Schneider and C. Beckermann:Technical Report UIME-CB01-1993, University of Iowa, Iowa City, IA, 1993.

    Google Scholar 

  32. M.C. Schneider and C. Beckermann:Technical Report UIME-CB01- 1994, The University of Iowa, Iowa City, IA, 1994. bk33.|C.Y. Wang : Ph.D. Thesis, University of Iowa, Iowa City, IA, 1994, pp. 150–51.

    Google Scholar 

  33. H. Landolt and R. Bornstein:Zahleenwerte der Physik und Chemie, Springer-Verlag, Berlin, 1969, part 5, vol. a.

    Google Scholar 

  34. P.J. Bunyan, S. Dellar, and N. Blake:Mater. Forum, 1992, vol. 16, pp. 215–24.

    CAS  Google Scholar 

  35. M.A. Krishtal:Diffusion Processes in Iron Alloys, Scientific Translations, Jerusalem, 1970 (in English).

    Google Scholar 

  36. J. Miettinen:Metall. Trans. A, 1992, vol. 23A, pp. 1155–70.

    CAS  Google Scholar 

  37. R.D. Pehlke, A. Jeyarajan, and H. Wada: Document No. PB 83- 211003, National Technical Information Service, Ann Arbor, MI, Dec. 1982.

  38. Y.S. Touloukain, R.W. Powell, C.Y. Ho, and P.B. Klemens:Thermophysical Properties of Matter, IFI/Plenum, New York, NY, 1970, vol. 1.

    Google Scholar 

  39. A.S. Sangani and A. Acrivos:Int. J. Multiphase Flow, 1982, vol. 8, pp. 193–206.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, M.C., Beckermann, C. Formation of macrosegregation by multicomponent thermosolutal convection during the solidification of steel. Metall Mater Trans A 26, 2373–2388 (1995). https://doi.org/10.1007/BF02671251

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02671251

Keywords

Navigation