Skip to main content
Log in

Metallurgical factors affecting high strength aluminum alloy production

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

With the advent of linear elastic fracture mechanics, the detailed effects of processing and microstructure on toughness can be evaluated. The effect of microstructure on plane stress and plane strain fracture toughness is considered in detail together with strength, fatigue behavior and corrosion resistance. It is concluded that second phase particles in all size ranges can influence toughness. Increasing the size and amount of particles or decreasing precipitate coherency all lead to decreases in toughness. Grain structure is also shown to play a prominent role in determining plane stress fracture toughness ; at a given strength level, a fibrous grain structure and the prevention of recrystallization are desirable. The ability to influence fatigue crack propagation by control of processing is more remote though relatively little systematic work has been carried out in this field. Thermomechanical processing is considered to offer another possible route to achieving a desirable balance of toughness, strength and corrosion resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. W. Evancho: “Development of an Al-Mg-Li Alloy”, Quarterly Report on Contract N62269-73-C-0219, May 1973.

  2. I. N. Fridlyander, S. M. Ambartsumyan, N. V. Shiryaevn, and R. M. Gabidullin:Metalloved. Term. Obrab. Metal, 1968, vol. 3, pp. 50–52.

    Google Scholar 

  3. G.E. Thompson and B. Noble:J. Inst. Metals, 1973, vol. 101, pp. 111–15.

    CAS  Google Scholar 

  4. R. R. Cervay: Air Force Materials Laboratory Technical Report AFML-TR-72-173, 1972.

  5. S. A. Levy, R. E. Zinkham, and G. E. Spangler: Paper No. 73-385, American Institute of Aeronautics and Astronautics, New York, 1973.

  6. D. S. Thompson, O. R. Singleton, R. D. McGowen, and G. E. Spangler:Metal Progr., 1970, vol. 98, no. 3, pp. 78–83.

    CAS  Google Scholar 

  7. H. Y. Hunsicker:Aluminum, K. R. Van Horn, ed., vol. 1, pp. 106–62, ASM Metals Park, Ohio, 1967.

    Google Scholar 

  8. D. S. Thompson, S. A. Levy, G. E. Spangler, and D. K. Benson: Final Report on Air Force Materials Laboratory Contract F33615-72-C-1202, October 1973.

  9. W. W. Binger, E. H. Hollingsworth, and D. 0. Sprowls:Aluminum, K. R Van Horn, ed., vol. 1, pp. 209–76, ASM, Metals Park, Ohio, 1967.

    Google Scholar 

  10. D. O. Sprowls and R. H. Brown:Proc. Conf. Fundamental Aspects Stress Corrosion Cracking, R. W. Staehle, Chief ed., pp. 466–506, NACE, Houston, Texas, 1967, published 1969.

    Google Scholar 

  11. E. A. Starke:J. Metals, 1970, [1], vol. 22, pp. 54–63.

    CAS  Google Scholar 

  12. H. P. van Leeuwen:Aluminium, 1972, vol. 48, pp. 719–22.

    Google Scholar 

  13. H. Antes, S. Lipson, and H. Rosenthal:Trans. TMS-AIME, 1967, vol. 239, pp. 1634–43.

    CAS  Google Scholar 

  14. S. N.Singh and M.C. Flemings:Trans. TMS-AIME, 1969, vol. 245, pp. 1811–19.

    Google Scholar 

  15. D. S. Thompson, B. S. Subramanya, and S. A. Levy:Met. Trans., 1971, vol. 2, pp. 1149–60.

    Article  CAS  Google Scholar 

  16. R. J. Goode, R. W. Judy, and C. N. Freed: Naval Research Laboratory, Report 6871, 1969.

  17. D. S. Thompson and S. A. Levy: “High Strength Aluminum Alloy Develop- ment”, Air Force Materials Laboratory Technical Report AFML-TR-70-171, August 1970.

  18. R. E. Zinkham, H. Liebowitz, and D. L. Jones:Mechanical Behavior of Materials, vol. 1, pp. 370–93, The Society of Materials Science, Kyoto, Japan, 1972.

    Google Scholar 

  19. J. H. Mulherin and H. Rosenthal:Met. Trans., 1971, vol. 2, pp. 427–32.

    Article  CAS  Google Scholar 

  20. P. Vigier:Rev. Alum., 1973, no. 417, pp. 279–88.

  21. C. J. Peel, R. N. Wilson, and P. J. E. Forsyth:Metal Sci. J., 1972, vol. 6, pp. 102–06.

    Article  CAS  Google Scholar 

  22. A. R. Rosenfield, C.W. Price, C.J. Martin, D. N. Williams, D. C. Drennen, D. S. Thompson, and R. E. Zinkham: “Research on the Synthesis of High Strength Aluminum Alloys”, Air Force Materials Laboratory Technical Report AFML-TR-74-129 Part 1, December 1974.

  23. D. Broek: “The Effect of the Sheet Thickness on the Fracture of Cracked Sheet”, National Aerospace Laboratory, Amsterdam, NLR-TR-M2160, 1966.

  24. G. T. Hahn and R. Simon: “Metallurgical Control of Fatigue Crack Growth in High Strength Aluminum Alloys,”, Air Force Materials Laboratory Technical Report AFML-TR-72-48, May 1972.

  25. W. J. Plumbridge:J. Mater. Sci., 1972, vol. 7, pp. 939–62.

    Article  CAS  ADS  Google Scholar 

  26. K. Erhardt, R. M. N. Pelloux, and N. J. Grant: Air Force Materials Laboratory Technical Report AFML-TR-69-85, 1969.

  27. S. M. El-Soudani and R. M. Pelloux:Met. Trans., 1973, vol. 4, pp. 519–31.

    Article  CAS  Google Scholar 

  28. P. J. E. Forsyth:The Physical Basis of Metal Fatigue, American Elsevier Publishing Company, New York, 1969.

    Google Scholar 

  29. B. J. Dunwoody, D. M. Moore, and A. T. Thomas:J. Imt. Metals, 1973, vol. 101. pp. 172–75.

    CAS  Google Scholar 

  30. I. Kirman:Met. Trans., 1971, vol. 2, p. 1761.

    CAS  Google Scholar 

  31. A. J. Sedricks, P. W. Slattery, and E. N. Pugh:ASM Trans. Quart., 1969, vol. 62, pp. 815–18.

    Google Scholar 

  32. A. J. Sedricks, P. W. Slattery, and E. N. Pugh:ASM Trans. Quart., 1969, vol. 2, p. 238.

    Google Scholar 

  33. G. Thomas and J. Nutting:J. Inst. Metals., 1959-60, vol. 88, p. 81.

    Google Scholar 

  34. P. C. Varley, M. K. B. Day, and A. Sendorek:J. Inst. Metals, 1957-58, vol. 86, p.337.

    Google Scholar 

  35. H. A. Holl:Corrosion, 1967, vol. 23, p. 173.

    CAS  Google Scholar 

  36. H. Gleiter and E. Hornbogen:Z. Metallk., 1967, vol. 58, pp. 157–63.

    CAS  Google Scholar 

  37. M. O. Speidel:Proc. Conf. Fundamental Aspects Stress Corrosion Cracking, R. W. Staehle, Chief ed., pp. 561–73, NACE, Houston, Texas, 1967, published 1969.

    Google Scholar 

  38. N. Ryum, B. Haeglund, and T. Lindtveit:Z. Metallk., 1967, vol. 58, pp. 28–31.

    CAS  Google Scholar 

  39. J. M. Dowling and J. W. Martin:Proc. 3rd Int. Conf. on Strength of Metals and Alloys, Cambridge, 1973, pp. 170–74, Inst. of Metals and the Iron and Steel Inst., London, 1973.

    Google Scholar 

  40. P. N. T. Unwin and G. C. Smith:J. Inst. Metals, 1969, vol. 97, pp. 299–310.

    CAS  Google Scholar 

  41. R. E. Zinkham, J. H. Dedrick, and J. H. Jackson:Aluminium, 1970, vol. 46. p. 624.

    CAS  Google Scholar 

  42. D. Broek, J. Schijve, and A. Nederveen: National Aeronautical and Astronauti- cal Research Institute, Amsterdam, The Netherlands, Report NLR-TR-M2134, 1965.

  43. W. Schütz and Oberparleiter:Aluminium, 1972, vol. 48, pp. 734–38.

    Google Scholar 

  44. D. Broek and C. Q. Bowles:J. Inst. Metals, 1971, vol. 99, pp. 255–57.

    CAS  Google Scholar 

  45. W. Gruhl and H. Cordier:Aluminium, 1968, vol. 44, pp. 403–11.

    Google Scholar 

  46. D. O. Sprawls, M. B. Shumaker, J. D. Walsh, and J. W. Coursen: “Evaluation of Stress-Corrosion Cracking Susceptibility Using Fracture Mechanics Tech- niques”, Final Report Part I, NASA Contract No. NAS-8-21487, May 31, 1973.

  47. R. F.Ashton:J. Metals, 1969 [9], vol. 21, pp. 35–38.

    Google Scholar 

  48. K. G. Kent:J. Aust. Inst. Metals, 1970, vol. 15, pp. 171–78.

    CAS  Google Scholar 

  49. T. Hiramatsu, M. Chikuda, Y. Miyagi, and K. Nagao:J. Jap. Inst. Light Metals, 1972, vol. 22, pp. 702–09.

    CAS  Google Scholar 

  50. A. Sendorek and A. W. Pearson:J. Inst. Metals, 1971, vol. 99, p. 33.

    CAS  Google Scholar 

  51. A. J. Cornish and M. K. B. Day:J. Inst. Metals, 1971, vol. 99, pp. 377–84.

    CAS  Google Scholar 

  52. P. A. Thackery and A. T. Thomas:J. Inst. Metals, 1971, vol. 99, pp. 114–17.

    CAS  Google Scholar 

  53. D. S. Thompson:Therm. Anal., Proc. Int. Conf. 2nd, Vol. 2, R. F. Schwenker and P. D. Gam, eds., Academic Press, New York, New York, 1968, published 1969.

    Google Scholar 

  54. A. J. Bryant:J. Inst. Metals, 1966, vol. 94, pp. 94–99.

    CAS  Google Scholar 

  55. J. E. Vruggink: “Quenching Rate Effects on Mechanical Properties of Heat Treatable Aluminum Alloys”, TMS Paper Selection No. A68-50, TMS-AIME, New York, 1968.

    Google Scholar 

  56. H. A. Holl:J. Inst. Metals, 1956-57, vol. 97, pp. 200–05.

    Google Scholar 

  57. M. Conserva and P. Fierini:Met. Trans., 1973. vol.4, pp. 857–62.

    Article  CAS  Google Scholar 

  58. A. J. Bryant and A. T. Thomas:J. Inst. Metals, 1972, vol. 100, pp. 40–44.

    CAS  Google Scholar 

  59. D. Altenpohl and D. Uelze:Metals Mater., 1971, vol. 5, pp. 65–71.

    CAS  Google Scholar 

  60. S. N. Singh and M. C. Flemings:Trans. TMS-AIME, 1969, vol. 245, pp. 1803- 09.

    CAS  Google Scholar 

  61. D. S. Thompson and S. A. Levy: Second Quarterly Report on Air Force Materials Laboratory Contract F33615-69-C-1643, 1969.

  62. A. J. Bryant and A. T. Thomas:J. Inst. Metals, 1972, vol. 100, pp. 40–44.

    CAS  Google Scholar 

  63. J. Waldman, H. Sulinski, and H. Markus: “New Processing Techniques for Aluminum Alloys”, Army Mater. Tech. Conf., Wentworth-by-the-Sea, N. H., October 1972.

  64. A. J. McEvily, Jr., J. B. Clark, and A. P. Bond:Trans. ASM, 1967, vol. 60, pp.661–71.

    CAS  Google Scholar 

  65. M. Conserva, E. Di Russo, and F. Gatto:Alluminio, 1968, vol. 37, no. 9, pp. 441–45.

    CAS  Google Scholar 

  66. A. J. Jacobs: “Optimizing the Combination of Strength and Stress-Corrosion Resistance of 7075 Aluminum by Thermal-Mechanical Treatments”, Contract No. N00019-69-C-0339, March 1970.

  67. F. Ostermann:Met. Trans., 1971, vol. 2, pp. 2897–902.

    Article  CAS  Google Scholar 

  68. V. A. Pavlov, Yu. I. Filippov, and S. A. Frisen:Fiz. Metal. Metalloved., 1965, vol. 20, pp. 770–74.

    Google Scholar 

  69. D. S. Thompson, S. A. Levy, and D. K. Benson:Proc. 3rd Int. Conf. on Strength of Metals and Alloys, Cambridge, 1973, pp. 119–23, Inst. of Metals and the Iron and Steel Inst., London, 1973.

    Google Scholar 

  70. A. W. Sommer, N. E. Paton, and D. G. Folgner: “Effects of Thermomechanical Treatments on Aluminum Alloys”, Air Force Materials Laboratory Technical Report AFML-TR-72-5, February 1972.

  71. E.Di Russo, M. Conserva, F. Gatto, and H. Markus:Met. Trans., 1973, vol. 4, p.1133.

    Article  Google Scholar 

  72. W. H. Reimann and A. W. Brisbane:Eng. Fract. Mech., 1973, vol. 5, p. 67.

    Article  CAS  Google Scholar 

  73. N. E. Paton and A. W. Sommer:Proc. 3rd Int. Conf. on Strength of Metals and Alloys, Cambridge, 1973, pp. 101–08, Inst. of Metals and the Iron and Steel Inst., London, 1973.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is based on an invited presentation made at a symposium on “Advances in the Physical Metallurgy of Aluminum Alloys” held at the Spring Meeting of TMS-IMD in Philadelphia, Pennsylvania, on May 29 to June 1, 1973. The symposium was co-sponsored by the Physical Metallurgy Committee and the Non-Ferrous Metals Committee of TMS-IMD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thompson, D.S. Metallurgical factors affecting high strength aluminum alloy production. Metall Trans A 6, 671–683 (1975). https://doi.org/10.1007/BF02672287

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02672287

Keywords

Navigation