Skip to main content
Log in

Cavity formation from inclusions in ductile fracture

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The previously proposed conditions for cavity formation from equiaxed inclusions in ductile fracture have been examined. Critical local elastic energy conditions are found to be necessary but not sufficient for cavity formation. The interfacial strength must also be reached on part of the boundary. For inclusions larger than about 100Å the energy condition is always satisfied when the interfacial strength is reached and cavities form by a critical interfacial stress condition. For smaller cavities the stored elastic energy is insufficient to open up interfacial cavities spontaneously. Approximate continuum analyses for extreme idealizations of matrix behavior furnish relatively close limits for the interfacial stress concentration for strain hardening matrices flowing around rigid non-yielding equiaxed inclusions. Such analyses give that in pure shear loading the maximum interfacial stress is very nearly equal to the equivalent flow stress in tension for the given state of plastic strain. Previously proposed models based on a local dissipation of deformation incompatibilities by the punching of dislocation loops lead to rather similar results for interfacial stress concentration when local plastic relaxation is allowed inside the loops. At very small volume fractions of second phase the inclusions do not interact for very substantial amounts of plastic strain. In this regime the interfacial stress is independent of inclusion size. At larger volume fractions of second phase, inclusions begin to interact after moderate amounts of plastic strain, and the interfacial stress concentration becomes dependent on second phase volume fraction. Some of the many reported instances of inclusion size effect in cavity formation can thus be satisfactorily explained by variations of volume fraction of second phase from point to point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Henry:Proc. Amer. Assoc. Advancement Science, 1855, vol. 9, p. 102.

    Google Scholar 

  2. W. A. Backofen:Met. Trans., 1973, vol. 4, p. 2679.

    Article  CAS  Google Scholar 

  3. K. E. Puttick:Phil. Mag., 1959, vol. 4, p. 964.

    Article  CAS  ADS  Google Scholar 

  4. E. Orowan:Rept. Progr. Phys., 1949, vol. 12, p. 185.

    Article  ADS  Google Scholar 

  5. A. R. Rosenfield:Met. Rev., 1968, vol. 13, no. 121, p. 29.

    CAS  Google Scholar 

  6. F. A. McClintock:Fracture, H. Liebowitz, ed., vol. 3, p. 106, Academic Press, New York, 1971.

    Google Scholar 

  7. J. R. Rice, and D. M. Tracey:J Mech. Solids, 1969, vol. 17, p. 201.

    Article  ADS  Google Scholar 

  8. C. A. Berg:Inelastic Behavior of Solids, M. F. Kanninenet al, eds., p. 171, McGraw-Hill, New York, 1970.

    Google Scholar 

  9. F. A. McClintock:Physics of Strength and Plasticity, A. S. Argon, ed., p. 307, M.I.T. Press, Cambridge, Mass., 1969.

    Google Scholar 

  10. R. O. Ritchie, J. F. Knott, and J. R. Rice:J. Mech. Phys. Solids, 1973, vol. 21, p. 395.

    Article  CAS  ADS  Google Scholar 

  11. I. Gurland and J. Plateau:Trans. ASM, 1963, vol. 56, p. 442.

    CAS  Google Scholar 

  12. K. Tanaka, T. Mori, and T. Nakamura:Phil. Mag., 1970, vol. 21, p. 267.

    Article  ADS  Google Scholar 

  13. D. Broek: “A Study on Ductile Fracture,” Ph.D. Thesis, Delft, Netherlands, 1971.

  14. M. F. Ashby:Phil. Mag., 1966, vol. 14, p. 1157.

    Article  CAS  ADS  Google Scholar 

  15. F. A. McClintock:Ductility, p. 255, ASM, Metals Park, Ohio, 1968.

    Google Scholar 

  16. A.S. Argon and J. Im:Met. Trans. A, 1975, vol. 6A, pp. 839–51.

    Article  CAS  Google Scholar 

  17. F. A. McClintock:J. Appl. Mech., 1968, vol. 35, p. 363.

    Google Scholar 

  18. I. G. Palmer and G. C. Smith:Proc. Second Bolton Landing Conf. on Oxide Dispersion Strengthening, p. 253, Gordon and Breach, N.Y., 1968.

    Google Scholar 

  19. J. Gurland:Acta Met., 1972, vol. 20, p. 735.

    Article  CAS  Google Scholar 

  20. L. M. Brown and W. M. Stobbs:Phil. Mag., 1971, vol. 23, p. 1201.

    Article  CAS  ADS  Google Scholar 

  21. A. N. Stroh:Proc. Roy. Soc, (London), 1955, vol. A232, p. 548.

  22. C. Zener:Fracturing of Metals, p. 3, ASM, Metals Park, Ohio, 1949.

    Google Scholar 

  23. A. N. Stroh:Proc. Roy. Soc, (London), 1954, vol. A223, p. 404.

  24. M. F. Ashby: private communication, 1971, (formerly at Harvard University, now at University Engineering Laboratory, Cambridge University, Cambridge, U.K.).

  25. P. B. Hirsch and F. J. Humphreys:Physics of Strength and Plasticity, A. S. Argon, ed., p. 189, M.I.T. Press, Cambridge, Mass., 1969.

    Google Scholar 

  26. W. C. Huang:Int. J. Solids, Structures, 1971, vol. 8, p. 149.

    Google Scholar 

  27. J. Orr and D. K. Brown:Elasto-Plastic Solution for a Cylindrical Inclusion in Plane Strain, Dept. of Mech. Eng. Report, University of Glasgow, 1973.

  28. S. S. Rhee and F. A. McClintock:Proc. Fourth U.S. Nat. Cong. Appl. Mech., vol. 2, p. 1007, ASME, New York, 1962.

    Google Scholar 

  29. B. V. Marcal and I. P. King:Int. J. Mech. Sci., 1967, vol. 9, p. 143.

    Article  Google Scholar 

  30. N. I. Muskhelishvilli:Some Basic Problems of the Mathematical Theory of Elasticity, p. 355, P. Noordhoff Ltd., Groningen, Netherlands, 1963.

    Google Scholar 

  31. G. N. Savin:Stress Concentration Around Holes, p. 260, Pergamon Press, N.Y., 1961.

    Google Scholar 

  32. J. D. Eshelby:Proc. Roy. Soc, (London), 1957, vol. A241, p. 376.

  33. A. Kelly, W. R. Tyson, and A. H. Cottrell:Phil. Mag., 1967, vol. 15, p. 567.

    Article  CAS  ADS  Google Scholar 

  34. L. M. Brown and J. D. Embury:Abstracts, Third International Conference on Strength of Metals and Alloys, Institute of Metals, London, 1973.

    Google Scholar 

  35. A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi:Higher Transcendental Functions, vol. 3, p. 217, McGraw-Hill, New York, 1955.

    MATH  Google Scholar 

  36. T. B. Cox and J. R. Low, Jr.:Met. Trans., 1974, vol. 5, p. 1457.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work has been presented in part orally at the Third International Conference on Fracture in Munich, Germany April 1973.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Argon, A.S., Im, J. & Safoglu, R. Cavity formation from inclusions in ductile fracture. Metall Trans A 6, 825–837 (1975). https://doi.org/10.1007/BF02672306

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02672306

Keywords

Navigation