Skip to main content
Log in

An improved mathematical model for electromagnetic casters and testing by a physical model

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

The paper describes a physical model aimed at studying two important phenomena in electromagnetic (EM) casting of aluminum: the support of the molten metal pool and stirring caused by EM forces. The physical model is used both to test an improved mathematical model for EM casting and to provide insight into the effect of design changes on the two EM phenomena. Examples of design changes are changes in inductor current and position and screen position. The improved mathematical model, a two-dimensional (2-D) (axisymmetric) one, constrains the melt surface at the solidification line and neglects (with justification) buoyancy, surface tension, and the impact of flow on meniscus shape. The physical model was a cylindrical one where the solidified metal was simulated by a 248-mm-diameter aluminum bronze cylinder and the molten metal by Wood’s alloy. Measurements were made of electric field, magnetic field, meniscus deformation, and velocities for the two types of caster in commercial use. Generally, good agreement was obtained between the mathematical model and the experimental measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J.R. Hull, R.J. Lari, W.F. Praeg, D.M. Rote, and L.R. Turner:Proc. Int. Syrnp. Casting Near Net Shape Products, Y. Sahai, J.E. Battles, R.S. Carbonara, and C.E. Mobley, eds., TMS, Warrendale, PA, 1988, pp. 525–43.

    Google Scholar 

  2. B.G. Lewis and J.C. Yarwood:Proc. Int. Syrup. Casting Near Net Shape Products, Y. Sahai, J.E. Battles, R.S. Carbonara, and C.E. Mobley, eds., TMS, Warrendale, PA, 1988, pp. 515–23.

    Google Scholar 

  3. Z.N. Getselev and G.I. Martynov:Magnit. Girodyn., 1974, no. 4, p. 87.

  4. Z.N. Getselev and G.I. Martynov:Magnit. Girodyn., 1975, no. 2, p. 106.

  5. Z.N. Getselev, D.A. Kreindel, A.A. Kaptilkin, and G.I. Martynov:Magnit. Girodyn., 1975, no. 2, p. 144.

  6. Z.N. Getselev, G.V. Telyakov, P.M. Bogdashkin, V.M. Persikov, and G.I. Martynov:Magnit. Girodyn., 1975, no. 3, p. 119.

  7. Z.N. Getselev and G.I. Martynov:Magnit. Girodyn., 1977, no. 1, p. 89.

  8. Z.N. Getselev and G.I. Martynov:Magnit. Girodyn., 1978, no. 2, p. 127.

  9. Z.N. Getselev and G.I. Martynov:Magnit. Girodyn., 1979, no. 1, p. 97.

  10. J.D. Layers:IEEE-IAS Conf. Proc., San Francisco, CA, 1982, p. 954.

  11. J.D. Lavers and M.R. Ahmed:Casting of Near Net Shape Products, TMS, Warrendale, PA, 1988, p. 395.

    Google Scholar 

  12. C. Vivès and R. Ricou:Metall. Trans. B, 1985, vol. 16B, pp. 377–84.

    Article  ADS  Google Scholar 

  13. J.L. Meyer, J. Szekely, N. El-Kaddah, C. Vivès, and R. Ricou:Metall. Trans. B, 1987, vol. 18B, pp. 539–48.

    Article  ADS  CAS  Google Scholar 

  14. J. Sakane, B.Q. Li, and J.W. Evans:Metall. Trans. B, 1988, vol. 19B, pp. 397–408.

    Article  ADS  CAS  Google Scholar 

  15. S.A. Shercliff:Proc. R. Soc. London A, 1981, vol. 375, p. 455.

    Article  ADS  Google Scholar 

  16. T. Breville, R. de Framond, J. Vijeon, and P. Masse:IEEE Trans. Mag., 1985, vol. Mag-21 (4), p. 1862.

    Article  ADS  Google Scholar 

  17. B.Q. Li and J.W. Evans:IEEE Trans. Mag., 1989, vol. 25, pp. 4443–48.

    Article  ADS  Google Scholar 

  18. C. Vivès:Metall. Trans. B, 1989, vol. 20B, pp. 623–29.

    Article  ADS  Google Scholar 

  19. C. Vivès:Metall. Trans. B, 1989, vol. 20B, pp. 631–43.

    Article  ADS  Google Scholar 

  20. B.E. Launder and D.B. Spalding:Lectures in Mathematical Models of Turbulence, Academic Press, London, 1972.

    MATH  Google Scholar 

  21. E.D. Tarapore: Kaiser Aluminum, Pleasanton, CA, personal communication, 1989.

  22. R. Ricon and C. Vivès:Int. J. HeatMass Transfer, 1982, vol. 25, p. 1579.

    Article  Google Scholar 

  23. H.-C. Lee, C. Vivès, and J.W. Evans:Metall. Trans. B, 1984, vol. 15B, pp. 734–36.

    Article  ADS  Google Scholar 

  24. S.K. Banerjee and J.W. Evans:Metall. Trans. B, 1990, vol. 21B, pp. 59–69.

    Article  ADS  CAS  Google Scholar 

  25. B.Q. Li: Ph.D. Dissertation, University of California, Berkeley, CA, 1989.

  26. D.P. Cook: M.S. Thesis, University of California, Berkeley, CA, 1989.

  27. J.D. Jackson:Classical Electrodynamics, John Wiley and Sons, New York, NY, 1962, p. 133.

    Google Scholar 

  28. B.Q. Li and J.W. Evans:IEEE Trans. Mag., 1989, vol. 25, pp. 4449–53.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, B.Q., Evans, J.W. & Cook, D.P. An improved mathematical model for electromagnetic casters and testing by a physical model. Metall Trans B 22, 121–134 (1991). https://doi.org/10.1007/BF02672533

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02672533

Keywords

Navigation