Skip to main content
Log in

A mechanism for the formation of lower bainite

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

A diffusional mechanism for the formation of lower bainite is proposed based primarily on transmission electron microscopy (TEM) observations of isothermally reacted specimens of Fe-C-2 pct Mn alloys. The mechanism involves the initial precipitation of a nearly carbide-free ferrite“spine,” followed by sympathetic nucleation of“secondary (ferrite) plates” which lie at an angle to the initial“spine.” Carbide precipitation subsequently occurs in austenite at ferrite: austenite boundaries located in small gaps between the“secondary plates.” An“annealing” process then occurs in which the gaps are filled in by further growth of ferrite and additional carbide precipitation; the annealing out of ferrite: ferrite boundaries between impinged“secondary plates” completes this process. This annealing stage contributes to the final appearance of lower bainite sheaves as monolithic plates containing embedded carbides. The present mechanism accounts for the single variant of carbides oriented at an angle to the sheaf axis repeatedly reported in lower bainite; it is also consistent with the previous observation of one“rough” side and one“smooth” side of lower bainite“plates.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Hultgren:Trans. ASM, 1947, vol. 39, pp. 915–89.

    Google Scholar 

  2. J.M. Robertson:J. Iron Steel Inst., 1929, vol. 119, pp. 391–419.

    Google Scholar 

  3. E.S. Davenport and E.C. Bain:Trans. AIME, 1930, vol. 90, pp. 117–54.

    Google Scholar 

  4. R.F. Mehl:Hardenability of Alloy Steels, ASM, Cleveland, OH, 1939, p. 1.

    Google Scholar 

  5. G.V. Smith and R.F. Mehl:Trans. AIME, 1942, vol. 150, pp. 211–26.

    Google Scholar 

  6. J.W. Christian and D.V. Edmonds:Phase Transformations in Ferrous Alloys, A.R. Marder and J.I. Goldstein, eds., TMS-AIME, Warrendale, PA, 1984, pp. 293–325.

    Google Scholar 

  7. J.M. Oblak and R.F. Hehemann:Transformation and Hardenability in Steels, Climax Molybdenum Co., Ann Arbor, MI, 1967, pp. 15–38.

    Google Scholar 

  8. R.F. Hehemann:Phase Transformations, ASM, Metals Park, OH, 1970, pp. 397–432.

    Google Scholar 

  9. H.K.D.H. Bhadeshia:Phase Transformations in Ferrous Alloys, A.R. Marder and J.I. Goldstein, eds., TMS-AIME, Warrendale, PA, 1984, pp. 335–39.

    Google Scholar 

  10. R.F. Hehemann, K.R. Kinsman, and H.I. Aaronson:Metall. Trans., 1972, vol. 3, pp. 1077–94.

    Article  CAS  Google Scholar 

  11. H.I. Aaronson:The Mechanism of Phase Transformations in Crystalline Solids, Institute of Metals, London, 1969, pp. 270–81.

    Google Scholar 

  12. H.I. Aaronson and H.J. Lee:Scripta Metall., 1987, vol. 21, pp. 1011–16.

    Article  CAS  Google Scholar 

  13. H.I. Aaronson, W.T. Rynolds, Jr., G. Spanos, and G.J. Shiflet:Metall. Trans. A, 1990, vol. 21A, pp. 1343–80.

    CAS  Google Scholar 

  14. H.I. Aaronson: inThe Decomposition ofAustenite by Diffusional Processes, V.F. Zackay and H.I. Aaronson, eds., Interscience, New York, NY, 1962, pp. 387–546.

    Google Scholar 

  15. H.I. Aaronson, C. Laird, and K.R. Kinsman:Phase Transformations, ASM, Metals Park, OH, 1970, pp. 313–96.

    Google Scholar 

  16. Second Progress Report of Subcommittee XI of Committee E4:Trans. ASTM, 1950, vol. 50, pp. 444–92.

    Google Scholar 

  17. H. Modin and S. Modin:Jernkontorets Ann., 1955, vol. 139, pp. 480–515.

    Google Scholar 

  18. Der-Hung Huang and Gareth Thomas:Metall. Trans. A, 1977, vol. 8A, pp. 1661–74.

    CAS  Google Scholar 

  19. G.Y. Lai:Metall. Trans. A, 1975, vol. 6A, pp. 1469–71.

    CAS  Google Scholar 

  20. D.N. Beshers:Diffusion, ASM, Metals Park, OH, 1972, pp. 209–40.

    Google Scholar 

  21. C. Wells, W. Batz, and R.F. Mehl:Trans. AIME, 1950, vol. 188, pp. 553–60.

    CAS  Google Scholar 

  22. J.C. Fisher:Thermodynamics in Physical Metallurgy, ASM, Metals Park, OH, 1950, p. 201.

    Google Scholar 

  23. G.R. Speich:Metals Handbook, 8th ed., ASM, Metals Park, OH, 1973, vol. 8, pp. 202–04.

    Google Scholar 

  24. G.R. Speich and W.C. Leslie:Metall. Trans., 1972, vol. 3, pp. 1043–54.

    Article  CAS  Google Scholar 

  25. M.G.H. Wells:Acta Metall., 1964, vol. 12, pp. 389–99.

    Article  CAS  Google Scholar 

  26. H. Wagenblast and R C. Glenn:Metall. Trans., 1970, vol. 1, pp. 2299–2304.

    Article  CAS  Google Scholar 

  27. F.B. Pickering:Transfoimation andHardenability in Steels, Climax Molybdenum Co., Ann Arbor, MI, 1967, pp. 109–32.

    Google Scholar 

  28. M.F. Smith, G.R. Speich, and M. Cohen:Trans. AIME, 1959, vol. 215, pp. 528–30.

    CAS  Google Scholar 

  29. G.R. Speich: inDecomposition of Austenite by Diffusional Processes, V.F. Zackay and H.I. Aaronson, eds., Interscience, New York, NY, 1962, pp. 353–70.

    Google Scholar 

  30. K. Okamoto and M. Oka:Metall. Trans. A, 1986, vol. 17A, pp. 1113–20.

    CAS  Google Scholar 

  31. D.N. Shackleton and P.M. Kelly:Physical Properties ofMartensite andBainite, Special Report 93, Iron and Steel Institute, London, 1965, pp. 126–34.

    Google Scholar 

  32. H.I. Aaronson, M.R. Plichta, G.W. Franti, and K.C. Russell:Metall. Trans. A, 1978, vol. 9A, pp. 363–71.

    CAS  Google Scholar 

  33. Y.A. Bagaryatski:Dokl. Akad. Nauk SSSR, 1950, vol. 73, p. 1161.

    Google Scholar 

  34. W. Pitsch and A. Schrader:Arch. Eisenhuettenwes., 1958, vol. 29, pp. 485–88.

    CAS  Google Scholar 

  35. P.M. Kelly and J. Nutting:Proc. R. Soc, 1960, vol. 259, pp. 45–58.

    Article  Google Scholar 

  36. J.W. Christian:Decomposition of Austenite by Diffusional Processes, Interscience, New York, NY, 1962, pp. 371–86.

    Google Scholar 

  37. G.R. Srinivasan and C.M. Wayman:Acta Metall., 1968, vol. 16, pp. 621–36.

    Article  CAS  Google Scholar 

  38. K.R. Kinsman, E. Eichen, and H.I. Aaronson:Metall. Trans. A, 1975, vol. 6A, pp. 303–17.

    CAS  Google Scholar 

  39. M.G. Hall, H.I. Aaronson, and G.W. Lorimer:Scripta Metall., 1975, vol. 9, pp. 533–42.

    Article  CAS  Google Scholar 

  40. H.J. Lee and H.I. Aaronson:Acta Metall., 1988, vol. 36, pp. 787–94.

    Article  CAS  Google Scholar 

  41. H.I. Aaronson and C. Wells:Trans. AIME, 1956, vol. 206, pp. 1216–23.

    Google Scholar 

  42. K.W. Andrews:J. Iron Steel Inst., 1965, vol. 203, pp. 721–26.

    CAS  Google Scholar 

  43. G. Spanos, H.S. Fang, D.S. Sarma, and H.I. Aaronson:Metall. Trans. A, 1990, vol. 21A, pp. 1391–411.

    CAS  Google Scholar 

  44. E.S.K. Menon and H.I. Aaronson:Acta Metall., 1987, vol. 35, pp. 549–63.

    Article  CAS  Google Scholar 

  45. G. Spanos and H.I. Aaronson:Scripta Metall., 1988, vol. 22, pp. 1537–42.

    Article  CAS  Google Scholar 

  46. R.W.K. Honeycombe:Steels: Microstructure and Properties, ASM, Metals Park, OH, 1982, pp. 106–20.

    Google Scholar 

  47. R.W.K. Honeycombe:Metall. Trans. A, 1976, vol. 7A, pp. 915–36.

    CAS  Google Scholar 

  48. Y. Ohmori, H. Ohtani, and T. Kunitake:Trans. Iron Steel Inst. Jpn., 1971, vol. 11, pp. 250–59.

    CAS  Google Scholar 

  49. H.I. Aaronson:J. Microsc, 1974, vol. 102, pp. 275–300.

    Google Scholar 

  50. R.E. Reed-Hill:Physical Metallurgy Principles, Van Nostrand Reinhold Company, New York, NY, 1973, p. 683.

    Google Scholar 

  51. J.M. Rigsbee and H.I. Aaronson:Acta Metall., 1979, vol. 27, pp. 365–76.

    Article  CAS  Google Scholar 

  52. M. Oka and K. Okamoto:Proc. Int. Conf. on Martensitic Transformations, The Japan Inst. of Metals, 1986, pp. 271–75.

  53. J.S. Bowles and C.S. Barrett:Prog. Met. Phys., 1952, vol. 3, pp. 1–41.

    Article  CAS  Google Scholar 

  54. B.P.J. Sandvik:Metall. Trans. A, 1982, vol. 13A, pp. 789–800.

    Google Scholar 

  55. M. Mannerkoski:Acta Polytech. Scand., 1964, ch. 26, p. 27.

  56. D.A. Porter and K.E. Easterling:Phase Transformations in Metals and Alloys, Van Nostrand Reinhold Co., New York, NY, 1981, p. 339.

    Google Scholar 

  57. H. Yada and T. Ooka:J. Metall. Soc. Jpn., 1967, vol. 31, pp. 771–76.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Graduate Student, Carnegie Mellon University.

Formerly Visiting Professor, Carnegie Mellon University.

This paper is based on a presentation made in the symposium“International Conference on Bainite” presented at the 1988 World Materials Congress in Chicago, IL, on September 26 and 27, 1988, under the auspices of the ASM INTERNATIONAL Phase Transformations Committee and the TMS Ferrous Metallurgy Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spanos, G., Fang, H.S. & Aaronson, H.I. A mechanism for the formation of lower bainite. Metall Trans A 21, 1381–1390 (1990). https://doi.org/10.1007/BF02672558

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02672558

Keywords

Navigation