Skip to main content
Log in

Microstructure effects on tensile properties of tungsten-Nickel-Iron composites

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Controlled processing of heavy alloys containing 88 to 97 pct W resulted in high sintered densities and excellent bonding between the tungsten grains and matrix. For these alloys, deformation and fracture behavior were studiedvia slow strain rate tensile testing at room temperature. The flow stress increased and the fracture strain decreased with increasing tungsten content. The tradeoff between strength and ductility resulted in a maximum in the ultimate tensile strength at 93 pct W. Microstructure variations, notably grain size, explain sintering temperature and time effects on the properties. During tensile testing, cracks formed on the surface of the specimens at tungsten-tungsten grain boundaries. The crack density increased with plastic strain and tungsten content. The surface cracks, though initially blunted by the matrix, eventually increased in density until catastrophic failure occurred. An empirical failure criterion was developed relating fracture to a critical value of the surface crack tip separation distance. Application of the model explains the effects of microstructural variables on tensile properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. S. Chum and D. N. Yoon:Powder Met., 1979, vol. 2, pp. 175–78.

    Google Scholar 

  2. T. K. Kang, E-T. Henig, W. A. Kaysser, and G. Petzow:Modem Developments in Powder Metallurgy, H. H. Hausner, H. W. Antes, and G. D. Smith, eds., Metal Powder Industries Federation, Princeton, NJ, 1981, vol. 14, pp. 189–203.

    Google Scholar 

  3. H. Danninger, W. Pisan, G. Jangg, and B. Lux:Z. Metallkde., 1983, vol. 74, pp. 151–55.

    CAS  Google Scholar 

  4. R. M. German and K. S. Churn:Metall. Trans. A, 1984, vol. 15A, pp. 747–54.

    CAS  Google Scholar 

  5. E. C. Green, D. J. Jones, and W. R. Pitkin:Symposium on Powder Metallurgy, Special Report no. 58, Iron and Steel Institute, London, U.K., 1956, pp. 253–56.

    Google Scholar 

  6. H. Takeuchi:Nippon Kinzoku Gakkaishi, 1967, vol. 31, pp. 1064–69.

    CAS  Google Scholar 

  7. D. V. Edmonds and P. N. Jones:Metall. Trans. A, 1979, vol. 10A, pp. 289–95.

    CAS  Google Scholar 

  8. L. G. Bazhenova, A. D. Vasilov, R. V. Minakova, and V. I. Trefilov:Soviet Powder Met. Metal Ceram., 1980, vol. 19, pp. 34–38.

    Google Scholar 

  9. R. V. Minakova, A. N. Pilyankevich, O. K. Teodorovich, and I. N. Frantsevich:Soviet Powder Met. Metal Ceram., 1968, vol. 7, pp. 396–99.

    Article  Google Scholar 

  10. B. C. Muddle:Metall. Trans. A, 1984, vol. 15A, pp. 1089–98.

    CAS  Google Scholar 

  11. L. Ekbom:Scand. J. Metall., 1976, vol. 5, pp. 179–84.

    CAS  Google Scholar 

  12. H. K. Yoon, S. H. Lee, S-J. Kang, and D. N. Yoon:J. Mater. Sci., 1983, vol. 18, pp. 1374–80.

    Article  CAS  Google Scholar 

  13. M. R. Eisenmann and R. M. German:Inter. J. Refract. Hard Met., 1984, vol. 3, pp. 86–91.

    CAS  Google Scholar 

  14. F. E. Sczerzenie and H. C. Rogers:Hydrogen in Metals, I. M. Bernstein and A. W. Thompson, eds., ASM, Metals Park, OH, 1974, pp. 645–55.

    Google Scholar 

  15. R. M. German and J. E. Hanafee:Processing of Metal and Ceramic Powders, R. M. German and K. W. Lay, eds., The Metallurgical Society, Warrendale, PA, 1982, pp. 267–82.

    Google Scholar 

  16. B. C. Muddle and D. V. Edmonds:Metal Sci., 1983, vol. 17, pp. 209–17.

    Article  CAS  Google Scholar 

  17. R. M. German, J. E. Hanafee, and S. L. DiGiallonardo:Metall. Trans. A, 1984, vol. 15A, pp. 121–28.

    CAS  Google Scholar 

  18. R. H. Krock:Metals for the Space Age, F. Benesovksy, ed., Metall werk Plansee, Reutte, Austria, 1965, pp. 265–75.

    Google Scholar 

  19. R. V. Minakova, N. A. Storchak, P. A. Verkhovodov, L. G. Bazhenova, and V. L. Poltoratskaya:Soviet Powder Met. Metal Ceram., 1980, vol. 19, pp. 842–46.

    Google Scholar 

  20. R. V. Minakova, A. N. Palyankevich, O. K. Teodorovich, and I. N. Frantsevich:Soviet Powder Met. Metal Ceram., 1968, vol. 7, pp. 473–77.

    Article  Google Scholar 

  21. J. Gurland and N. M. Parikh:Fracture: An Advanced Treatise, H. Liebowitz, ed., Academic Press, New York, NY, 1972, vol. VII, pp. 841–78.

    Google Scholar 

  22. E. J. Votava:Planseeber. Pulvermetall., 1973, vol. 21, pp. 79–87.

    CAS  Google Scholar 

  23. L. Ekbom:Modern Developments in Powder Metallurgy, H. H. Hausner, H. W. Antes, and G. D. Smith, eds., Metal Powder Industries Federation, Princeton, NJ, 1981, vol. 14, pp. 177–88.

    Google Scholar 

  24. J. W. O’Neil and P. W. Salyer: AFOSR 66-1670, ASRC 132-2 USAF, Massachusetts Institute of Technology, Cambridge, MA, 1965.

  25. K. S. Churn and R. M. German:Metall. Trans. A, 1984, vol. 15A, pp. 331–38.

    CAS  Google Scholar 

  26. R. M. German, L. L. Bourguignon, and B. H. Rabin:J. Metals, 1985, vol. 37 (8), pp. 36–39.

    CAS  Google Scholar 

  27. A. Bose, B. H. Rabin, S. Farooq, and R. M. German:Horizons of Powder Metallurgy, Part II, W. A. Kaysser and W. J. Huppmann, eds., Verlag Schmid, Freiburg, W. Germany, 1986, pp. 1123–26.

    Google Scholar 

  28. E. E. Underwood:Quantitative Stereology, Addison-Wesley, Reading, MA, 1970.

    Google Scholar 

  29. B. H. Rabin, A. Bose, and R. M. German:Microstructural Science, M. E. Blum, P. M. French, R. M. Middleton, and G. F. Vander Voort, eds., Elsevier, New York, NY, 1986, vol. 15, pp. 285–99.

    Google Scholar 

  30. R. M. German:Metall. Trans. A, 1985, vol. 16A, pp. 1247–52.

    CAS  Google Scholar 

  31. R. M. German:Liquid Phase Sintering, Plenum Press, New York, NY, 1985.

    Google Scholar 

  32. R. M. German:Metall. Trans. A, 1987, vol. 18A, pp. 909–14.

    CAS  Google Scholar 

  33. T. Kang and D. N. Yoon:Metall. Trans. A, 1978, vol. 9A, pp. 433–38.

    CAS  Google Scholar 

  34. R. H. Krock:J. Mater., 1966, vol. 1, pp. 278–92.

    Google Scholar 

  35. E. G. Zukas:Metall. Trans. B, 1976, vol. 7B, pp. 49–54.

    Article  CAS  Google Scholar 

  36. I. L. Mogford:Metall. Rev., 1967, vol. 12, pp. 49–67.

    CAS  Google Scholar 

  37. A. R. Rosenfield:Metall. Rev., 1968, vol. 13, pp. 29–40.

    CAS  Google Scholar 

  38. F. A. McClintock:Ductility, ASM, Metals Park, OH, 1968, pp. 255–77.

    Google Scholar 

  39. J. R. Rice and M. A. Johnson:Inelastic Behavior of Solids, M. F. Kanninen, W. F. Adler, A. R. Rosenfield, and R. I. Jaffee, eds., McGraw-Hill, New York, NY, 1970, pp. 641–72.

    Google Scholar 

  40. D. McLean:The Mechanics and Physics of Fracture, Proceedings of the Joint Meeting of the Metals Society and Institute of Physics at Cambridge, The Metals Society, London, U.K., 1975, pp. 179–91.

    Google Scholar 

  41. H. Fischmeister and B. Karlsson:Z. Metallkde., 1977, vol. 68, pp. 311–27.

    CAS  Google Scholar 

  42. A. Joshi and D. F. Stein:Metall. Trans., 1970, vol. 1, pp. 2543–46.

    CAS  Google Scholar 

  43. L. L. Bourguignon and R. M. German:Inter. J. Powder Met., 1988, vol. 23, in press.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Graduate Research Assistant at Rensselaer Polytechnic Institute.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rabin, B.H., German, R.M. Microstructure effects on tensile properties of tungsten-Nickel-Iron composites. Metall Trans A 19, 1523–1532 (1988). https://doi.org/10.1007/BF02674026

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02674026

Keywords

Navigation