Skip to main content
Log in

Protective properties of shields of ceramic/aluminum composite for hypervelocity impact

  • Published:
Combustion, Explosion and Shock Waves Aims and scope

Abstract

The protective effect of thin shields of metal-composites based on a matrix of aluminum with dispersed inclusions of SiO2 and Al2O3 for hypervelocity impact of spherical steel particles are examined in a one-layer protection scheme. The protective effect of shields of these materials are found to be inferior to shields of homogeneous aluminum alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. J. Stilp and K. Weber, “Debris clouds behind double-layer targets,”Int J. Impact Engng.,20, No. 6, 765–778 (1997).

    Article  Google Scholar 

  2. J. H. Robinson and A. M. Nolen, “An investigation of metal matrix composites as shields for hypervelocity orbital debris impact,”Int. J. Impact Engng.,17, Nos. 1–6, 685–696 (1995).

    Article  Google Scholar 

  3. V. V. Sil’vestrov, A. V. Plastinin, V. V. Pai, and I. V. Yakovlev, “Morphology of craters during hypervelocity impact on isotropic composites with inclusions,”Fiz. Goreniya Vzryva,33, No. 3, 139–151 (1997).

    Google Scholar 

  4. V. M. Titov, I. I. Fadeenko, and N. S. Titova, “Acceleration of solid particles by a cumulative explosion,”Dokl. Akad. Nauk SSSR,180, No. 5, 1051–1052 (1968).

    Google Scholar 

  5. L. A. Merzhievskii and V. M. Titov, “Protective properties of a thin screen for hypervelocity impact,”Prikl. Mekh. Tekh. Fiz., No. 2, 135–139 (1977).

    Google Scholar 

  6. V. M. Titov and V. V. Silvestrov, “Acceleration of solid spherical projectiles by cumulative explosion of tubular charges of high explosive,” Report, Lavrent’ev Inst. of Hydrodynamics (1994).

  7. A. N. Dremin and I. A. Karpukhin, “A method for determining the shock adiabats of dispersed materials,”Prikl. Mekh. Tekh. Fiz., No. 3, pp. 184–188 (1960).

    Google Scholar 

  8. M. van Thiel (ed.),Compendium of Shock Wave Data, Vols. 1–2, Lawrence Livermore Laboratory, Univ. of CA (1977).

  9. J. Thouvenin, “Effect of a shock wave on a porous solid,” in:Proc. Fourth Symp. (Int.) on Detonation (1965), pp. 258–265.

  10. T. Rini, “Numerical simulation of hypervelocity impact phenomena,” in:Hypervelocity Impact Phenomena [Russian translation], Mir, Moscow (1973), pp. 164–219.

    Google Scholar 

  11. A. J. Piekutowski, “Fragmentation of a sphere initiated by hypervelocity impact with a thin sheet,”Int. J. Impact Engng.,17, Nos. 1–6, 627–638 (1995).

    Article  Google Scholar 

  12. C. Mazeau, L. Beylat, P. Longère, and P. F. Louvignè, “On the quantitative evaluation of adiabatic shear banding sensitivity of various titanium alloys,”J. Physique IV,7, 429–434 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated fromFizika Goreniya i Vzryva, Vol. 35, No. 3, pp. 126–132, May–June 1999.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sil’vestrov, V.V., Plastinin, A.V., Pai, V.V. et al. Protective properties of shields of ceramic/aluminum composite for hypervelocity impact. Combust Explos Shock Waves 35, 331–337 (1999). https://doi.org/10.1007/BF02674459

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02674459

Keywords

Navigation